利用遥感监测富营养化湖泊蓝藻的时间动态:从多光谱到高光谱

IF 4.5 Q2 ENVIRONMENTAL SCIENCES
Samantha L. Sharp , Alicia Cortés , Alexander L. Forrest , Carl J. Legleiter , Liane S. Guild , Yufang Jin , S. Geoffrey Schladow
{"title":"利用遥感监测富营养化湖泊蓝藻的时间动态:从多光谱到高光谱","authors":"Samantha L. Sharp ,&nbsp;Alicia Cortés ,&nbsp;Alexander L. Forrest ,&nbsp;Carl J. Legleiter ,&nbsp;Liane S. Guild ,&nbsp;Yufang Jin ,&nbsp;S. Geoffrey Schladow","doi":"10.1016/j.rsase.2025.101704","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanobacterial harmful algal blooms (cyanoHABs) and associated cyanotoxins are a concern for inland waters. Due to the extensive spatial coverage and frequent availability of satellite images, multispectral remote sensing tools demonstrate utility for monitoring these blooms. The next frontier for remote sensing of cyanoHABs in inland waters is hyperspectral data. Recent and upcoming hyperspectral satellite missions using narrow wavelength imaging spectrometers could have a major impact on advancing our ability to detect, quantify, and characterize cyanobacterial blooms. This study compares multispectral and hyperspectral remote sensing capabilities and processing tools for monitoring cyanoHAB dynamics. We evaluated the temporal trends of cyanoHABs in Clear Lake, California, a hypereutrophic lake with diverse cyanobacteria genera based on 38 sampling events over a five-year monitoring period (2019–2023). We validated the Sentinel-3 Ocean and Land Color Instrument (multispectral) Cyanobacteria Index algorithm for Clear Lake using in situ cyanobacteria measurements, which complemented our field-based evaluation of cyanobacteria trends in Clear Lake. We then demonstrate the advantages of hyperspectral data from both in situ spectroradiometer measurements and full-lake hyperspectral satellite images. We apply the Spectral Mixture Analysis for Surveillance of HABs (SMASH) workflow, a Multiple Endmember Spectral Mixture Analysis (MESMA) algorithm, to the hyperspectral images to assess the potential of satellite imaging spectrometer data to identify cyanobacteria genera – the first study to test this tool outside its original study sites. We developed a Clear Lake-specific cyanobacteria spectral library using our field spectroradiometer measurements to improve SMASH performance in Clear Lake, which supports the continued development of this tool.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"39 ","pages":"Article 101704"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring cyanobacteria temporal dynamics in a hypereutrophic lake using remote sensing: From multispectral to hyperspectral\",\"authors\":\"Samantha L. Sharp ,&nbsp;Alicia Cortés ,&nbsp;Alexander L. Forrest ,&nbsp;Carl J. Legleiter ,&nbsp;Liane S. Guild ,&nbsp;Yufang Jin ,&nbsp;S. Geoffrey Schladow\",\"doi\":\"10.1016/j.rsase.2025.101704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyanobacterial harmful algal blooms (cyanoHABs) and associated cyanotoxins are a concern for inland waters. Due to the extensive spatial coverage and frequent availability of satellite images, multispectral remote sensing tools demonstrate utility for monitoring these blooms. The next frontier for remote sensing of cyanoHABs in inland waters is hyperspectral data. Recent and upcoming hyperspectral satellite missions using narrow wavelength imaging spectrometers could have a major impact on advancing our ability to detect, quantify, and characterize cyanobacterial blooms. This study compares multispectral and hyperspectral remote sensing capabilities and processing tools for monitoring cyanoHAB dynamics. We evaluated the temporal trends of cyanoHABs in Clear Lake, California, a hypereutrophic lake with diverse cyanobacteria genera based on 38 sampling events over a five-year monitoring period (2019–2023). We validated the Sentinel-3 Ocean and Land Color Instrument (multispectral) Cyanobacteria Index algorithm for Clear Lake using in situ cyanobacteria measurements, which complemented our field-based evaluation of cyanobacteria trends in Clear Lake. We then demonstrate the advantages of hyperspectral data from both in situ spectroradiometer measurements and full-lake hyperspectral satellite images. We apply the Spectral Mixture Analysis for Surveillance of HABs (SMASH) workflow, a Multiple Endmember Spectral Mixture Analysis (MESMA) algorithm, to the hyperspectral images to assess the potential of satellite imaging spectrometer data to identify cyanobacteria genera – the first study to test this tool outside its original study sites. We developed a Clear Lake-specific cyanobacteria spectral library using our field spectroradiometer measurements to improve SMASH performance in Clear Lake, which supports the continued development of this tool.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"39 \",\"pages\":\"Article 101704\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938525002575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525002575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蓝藻有害藻华(cyanoHABs)和相关的蓝藻毒素是一个关注内陆水域。由于广泛的空间覆盖和卫星图像的频繁可用性,多光谱遥感工具显示了监测这些华的效用。内陆水域蓝藻藻遥感的下一个前沿是高光谱数据。最近和即将到来的使用窄波长成像光谱仪的高光谱卫星任务可能对提高我们检测、量化和表征蓝藻华的能力产生重大影响。本研究比较了多光谱和高光谱遥感能力以及监测氰化赤潮动态的处理工具。基于2019-2023年5年监测期间的38次采样事件,研究人员评估了加州Clear Lake(一个拥有多种蓝藻属的富营养化湖泊)蓝藻有害藻华的时间趋势。我们使用原位蓝藻测量验证了Sentinel-3海洋和陆地颜色仪器(多光谱)蓝藻指数算法,该算法补充了我们对Clear Lake蓝藻趋势的现场评估。然后,我们展示了来自原位光谱辐射计测量和全湖高光谱卫星图像的高光谱数据的优势。我们将光谱混合分析用于监测赤潮(SMASH)工作流程,多端元光谱混合分析(MESMA)算法应用于高光谱图像,以评估卫星成像光谱仪数据识别蓝藻属的潜力-这是第一个在其原始研究地点之外测试该工具的研究。我们利用我们的现场光谱辐射计测量开发了一个Clear Lake特定的蓝藻光谱库,以提高SMASH在Clear Lake的性能,这支持了该工具的持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring cyanobacteria temporal dynamics in a hypereutrophic lake using remote sensing: From multispectral to hyperspectral
Cyanobacterial harmful algal blooms (cyanoHABs) and associated cyanotoxins are a concern for inland waters. Due to the extensive spatial coverage and frequent availability of satellite images, multispectral remote sensing tools demonstrate utility for monitoring these blooms. The next frontier for remote sensing of cyanoHABs in inland waters is hyperspectral data. Recent and upcoming hyperspectral satellite missions using narrow wavelength imaging spectrometers could have a major impact on advancing our ability to detect, quantify, and characterize cyanobacterial blooms. This study compares multispectral and hyperspectral remote sensing capabilities and processing tools for monitoring cyanoHAB dynamics. We evaluated the temporal trends of cyanoHABs in Clear Lake, California, a hypereutrophic lake with diverse cyanobacteria genera based on 38 sampling events over a five-year monitoring period (2019–2023). We validated the Sentinel-3 Ocean and Land Color Instrument (multispectral) Cyanobacteria Index algorithm for Clear Lake using in situ cyanobacteria measurements, which complemented our field-based evaluation of cyanobacteria trends in Clear Lake. We then demonstrate the advantages of hyperspectral data from both in situ spectroradiometer measurements and full-lake hyperspectral satellite images. We apply the Spectral Mixture Analysis for Surveillance of HABs (SMASH) workflow, a Multiple Endmember Spectral Mixture Analysis (MESMA) algorithm, to the hyperspectral images to assess the potential of satellite imaging spectrometer data to identify cyanobacteria genera – the first study to test this tool outside its original study sites. We developed a Clear Lake-specific cyanobacteria spectral library using our field spectroradiometer measurements to improve SMASH performance in Clear Lake, which supports the continued development of this tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信