{"title":"受斜坡速率限制的分布式自动发电控制:随时可行,网络连通均匀","authors":"Mohammadreza Doostmohammadian , Hamid R. Rabiee","doi":"10.1016/j.dsp.2025.105576","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers automatic generation control over an information-sharing network of communicating generators as a multi-agent system. The optimization solution is distributed among the agents based on information consensus algorithms, while addressing the generators' ramp-rate-limits (RRL). This is typically ignored in the existing linear/nonlinear optimization solutions but they exist in real-time power generation scenarios. Without addressing the RRL, the generators cannot follow the assigned rate of generating power by the optimization algorithm; therefore, the existing solutions may not necessarily converge to the exact optimal cost or may lose feasibility in practice. The proposed solution in this work addresses the ramp-rate-limit constraint along with the box constraint (limits on the generated powers) and the coupling-constraint (generation-demand balance) at all iteration times of the algorithm. The latter is referred to as the anytime feasibility and implies that at every termination point of the algorithm, the balance between the demand and generated power holds. To improve the convergence rate of the algorithm we further consider internal signum-based nonlinearity. We also show that our solution can tolerate communication link removal. This follows from the uniform-connectivity assumption on the communication network.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"168 ","pages":"Article 105576"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed automatic generation control subject to ramp-rate-limits: Anytime feasibility and uniform network-connectivity\",\"authors\":\"Mohammadreza Doostmohammadian , Hamid R. Rabiee\",\"doi\":\"10.1016/j.dsp.2025.105576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers automatic generation control over an information-sharing network of communicating generators as a multi-agent system. The optimization solution is distributed among the agents based on information consensus algorithms, while addressing the generators' ramp-rate-limits (RRL). This is typically ignored in the existing linear/nonlinear optimization solutions but they exist in real-time power generation scenarios. Without addressing the RRL, the generators cannot follow the assigned rate of generating power by the optimization algorithm; therefore, the existing solutions may not necessarily converge to the exact optimal cost or may lose feasibility in practice. The proposed solution in this work addresses the ramp-rate-limit constraint along with the box constraint (limits on the generated powers) and the coupling-constraint (generation-demand balance) at all iteration times of the algorithm. The latter is referred to as the anytime feasibility and implies that at every termination point of the algorithm, the balance between the demand and generated power holds. To improve the convergence rate of the algorithm we further consider internal signum-based nonlinearity. We also show that our solution can tolerate communication link removal. This follows from the uniform-connectivity assumption on the communication network.</div></div>\",\"PeriodicalId\":51011,\"journal\":{\"name\":\"Digital Signal Processing\",\"volume\":\"168 \",\"pages\":\"Article 105576\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1051200425005986\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425005986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distributed automatic generation control subject to ramp-rate-limits: Anytime feasibility and uniform network-connectivity
This paper considers automatic generation control over an information-sharing network of communicating generators as a multi-agent system. The optimization solution is distributed among the agents based on information consensus algorithms, while addressing the generators' ramp-rate-limits (RRL). This is typically ignored in the existing linear/nonlinear optimization solutions but they exist in real-time power generation scenarios. Without addressing the RRL, the generators cannot follow the assigned rate of generating power by the optimization algorithm; therefore, the existing solutions may not necessarily converge to the exact optimal cost or may lose feasibility in practice. The proposed solution in this work addresses the ramp-rate-limit constraint along with the box constraint (limits on the generated powers) and the coupling-constraint (generation-demand balance) at all iteration times of the algorithm. The latter is referred to as the anytime feasibility and implies that at every termination point of the algorithm, the balance between the demand and generated power holds. To improve the convergence rate of the algorithm we further consider internal signum-based nonlinearity. We also show that our solution can tolerate communication link removal. This follows from the uniform-connectivity assumption on the communication network.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,