{"title":"束扩展射影空间中的辛叶","authors":"Alexandru Chirvasitu","doi":"10.1016/j.aim.2025.110515","DOIUrl":null,"url":null,"abstract":"<div><div>Fix a stable degree-<em>n</em> rank-<em>k</em> bundle <span><math><mi>F</mi></math></span> on a complex elliptic curve for (coprime) <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. We identify the symplectic leaves of the Poisson structure introduced independently by Polishchuk and Feigin-Odesskii on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>≅</mo><mi>P</mi><msup><mrow><mi>Ext</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>,</mo><mi>O</mi><mo>)</mo></math></span> as precisely the loci classifying extensions <span><math><mn>0</mn><mo>→</mo><mi>O</mi><mo>→</mo><mi>E</mi><mo>→</mo><mi>F</mi><mo>→</mo><mn>0</mn></math></span> with <span><math><mi>E</mi></math></span> fitting into a fixed isomorphism class, verifying a claim of Feigin-Odesskii. We also classify the bundles <span><math><mi>E</mi></math></span> which do fit into such extensions in geometric/combinatorial terms, involving their Harder-Narasimhan polygons introduced by Shatz.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110515"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectic leaves in projective spaces of bundle extensions\",\"authors\":\"Alexandru Chirvasitu\",\"doi\":\"10.1016/j.aim.2025.110515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fix a stable degree-<em>n</em> rank-<em>k</em> bundle <span><math><mi>F</mi></math></span> on a complex elliptic curve for (coprime) <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. We identify the symplectic leaves of the Poisson structure introduced independently by Polishchuk and Feigin-Odesskii on <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>≅</mo><mi>P</mi><msup><mrow><mi>Ext</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>F</mi><mo>,</mo><mi>O</mi><mo>)</mo></math></span> as precisely the loci classifying extensions <span><math><mn>0</mn><mo>→</mo><mi>O</mi><mo>→</mo><mi>E</mi><mo>→</mo><mi>F</mi><mo>→</mo><mn>0</mn></math></span> with <span><math><mi>E</mi></math></span> fitting into a fixed isomorphism class, verifying a claim of Feigin-Odesskii. We also classify the bundles <span><math><mi>E</mi></math></span> which do fit into such extensions in geometric/combinatorial terms, involving their Harder-Narasimhan polygons introduced by Shatz.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110515\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000187082500413X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500413X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Symplectic leaves in projective spaces of bundle extensions
Fix a stable degree-n rank-k bundle on a complex elliptic curve for (coprime) . We identify the symplectic leaves of the Poisson structure introduced independently by Polishchuk and Feigin-Odesskii on as precisely the loci classifying extensions with fitting into a fixed isomorphism class, verifying a claim of Feigin-Odesskii. We also classify the bundles which do fit into such extensions in geometric/combinatorial terms, involving their Harder-Narasimhan polygons introduced by Shatz.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.