考虑贝叶斯网络放大方法模型的相关性和删减

IF 2.4 2区 社会学 Q1 ANTHROPOLOGY
Benjamin Vogel, Breschine Cummins, Ian Laga
{"title":"考虑贝叶斯网络放大方法模型的相关性和删减","authors":"Benjamin Vogel,&nbsp;Breschine Cummins,&nbsp;Ian Laga","doi":"10.1016/j.socnet.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Network Scale-up Method (NSUM) estimates the size of hard-to-reach populations using survey data on individuals’ social networks. Existing NSUM models incorporate correlation across groups in the responses. We propose a generalized model that improves NSUM accuracy by addressing data censoring and accounting for the relationship between social network size and the likelihood of knowing individuals in different groups. Correlations are directly estimable from NSUM survey data, and simulations show that subpopulation estimates are biased when censoring and correlations are ignored. We analyze two data sets, yielding both population size estimates and novel insights into social network structures in these communities.</div></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"84 ","pages":"Pages 101-109"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accounting for correlation and censoring in Bayesian Network Scale-up Method Models\",\"authors\":\"Benjamin Vogel,&nbsp;Breschine Cummins,&nbsp;Ian Laga\",\"doi\":\"10.1016/j.socnet.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Network Scale-up Method (NSUM) estimates the size of hard-to-reach populations using survey data on individuals’ social networks. Existing NSUM models incorporate correlation across groups in the responses. We propose a generalized model that improves NSUM accuracy by addressing data censoring and accounting for the relationship between social network size and the likelihood of knowing individuals in different groups. Correlations are directly estimable from NSUM survey data, and simulations show that subpopulation estimates are biased when censoring and correlations are ignored. We analyze two data sets, yielding both population size estimates and novel insights into social network structures in these communities.</div></div>\",\"PeriodicalId\":48353,\"journal\":{\"name\":\"Social Networks\",\"volume\":\"84 \",\"pages\":\"Pages 101-109\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Networks\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378873325000462\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873325000462","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

网络放大法(NSUM)利用个人社交网络的调查数据来估计难以接触到的人群的规模。现有的NSUM模型在响应中纳入了组间的相关性。我们提出了一个广义模型,通过解决数据审查和考虑社会网络规模与不同群体中认识个体的可能性之间的关系来提高NSUM的准确性。从NSUM调查数据中可以直接估计相关性,并且模拟表明,当审查和忽略相关性时,亚种群估计是有偏差的。我们分析了两个数据集,得出了人口规模估计和对这些社区的社会网络结构的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accounting for correlation and censoring in Bayesian Network Scale-up Method Models
The Network Scale-up Method (NSUM) estimates the size of hard-to-reach populations using survey data on individuals’ social networks. Existing NSUM models incorporate correlation across groups in the responses. We propose a generalized model that improves NSUM accuracy by addressing data censoring and accounting for the relationship between social network size and the likelihood of knowing individuals in different groups. Correlations are directly estimable from NSUM survey data, and simulations show that subpopulation estimates are biased when censoring and correlations are ignored. We analyze two data sets, yielding both population size estimates and novel insights into social network structures in these communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Networks
Social Networks Multiple-
CiteScore
5.90
自引率
12.90%
发文量
118
期刊介绍: Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信