Yuhan Tang, Yuedong Wang, Yonghua Li, Tao Guo, Qiyu An, Qi Dong
{"title":"基于累积疲劳损伤新方法的转向架框架五维数字孪生模型","authors":"Yuhan Tang, Yuedong Wang, Yonghua Li, Tao Guo, Qiyu An, Qi Dong","doi":"10.1177/10567895251375352","DOIUrl":null,"url":null,"abstract":"The fatigue failure of the rail vehicle bogie frame is primarily attributed to nonlinear fatigue damage under complex loading conditions. As one of the key technologies for promoting digitization in the field of rail transport, the related studies focusing on nonlinear fatigue damage assessment of the bogie frame based on a digital twin are being developed. In response to this case, a five-dimensional digital twin model of the bogie frame with a new approach for accumulation fatigue damage is established. To enhance the accuracy of the fatigue damage assessment in the digital twin model, an improved Manson–Halford nonlinear cumulative analytical model is presented based on the analogy between the decomposition of organic matter in ecology and the degradation of mechanical properties of materials. Additionally, to boost the efficiency of mapping between the physical entity and the virtual entity based on physical programming and particle swarm optimization. The proposed digital twin model uniquely merges data-driven and mechanics-driven methodologies, offering a robust solution for the structural design and durability optimization of the bogie frame.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"69 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A five-dimensional digital twin model of bogie frame with a new approach for accumulation fatigue damage\",\"authors\":\"Yuhan Tang, Yuedong Wang, Yonghua Li, Tao Guo, Qiyu An, Qi Dong\",\"doi\":\"10.1177/10567895251375352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fatigue failure of the rail vehicle bogie frame is primarily attributed to nonlinear fatigue damage under complex loading conditions. As one of the key technologies for promoting digitization in the field of rail transport, the related studies focusing on nonlinear fatigue damage assessment of the bogie frame based on a digital twin are being developed. In response to this case, a five-dimensional digital twin model of the bogie frame with a new approach for accumulation fatigue damage is established. To enhance the accuracy of the fatigue damage assessment in the digital twin model, an improved Manson–Halford nonlinear cumulative analytical model is presented based on the analogy between the decomposition of organic matter in ecology and the degradation of mechanical properties of materials. Additionally, to boost the efficiency of mapping between the physical entity and the virtual entity based on physical programming and particle swarm optimization. The proposed digital twin model uniquely merges data-driven and mechanics-driven methodologies, offering a robust solution for the structural design and durability optimization of the bogie frame.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895251375352\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895251375352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A five-dimensional digital twin model of bogie frame with a new approach for accumulation fatigue damage
The fatigue failure of the rail vehicle bogie frame is primarily attributed to nonlinear fatigue damage under complex loading conditions. As one of the key technologies for promoting digitization in the field of rail transport, the related studies focusing on nonlinear fatigue damage assessment of the bogie frame based on a digital twin are being developed. In response to this case, a five-dimensional digital twin model of the bogie frame with a new approach for accumulation fatigue damage is established. To enhance the accuracy of the fatigue damage assessment in the digital twin model, an improved Manson–Halford nonlinear cumulative analytical model is presented based on the analogy between the decomposition of organic matter in ecology and the degradation of mechanical properties of materials. Additionally, to boost the efficiency of mapping between the physical entity and the virtual entity based on physical programming and particle swarm optimization. The proposed digital twin model uniquely merges data-driven and mechanics-driven methodologies, offering a robust solution for the structural design and durability optimization of the bogie frame.
期刊介绍:
Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics.
Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department.
The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).