基于fcg的Android恶意软件检测系统的高效对抗性攻击

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Heng Li;Bang Wu;Wei Zhou;Wei Yuan;Cuiying Gao;Xinge You;Xiapu Luo
{"title":"基于fcg的Android恶意软件检测系统的高效对抗性攻击","authors":"Heng Li;Bang Wu;Wei Zhou;Wei Yuan;Cuiying Gao;Xinge You;Xiapu Luo","doi":"10.1109/TIFS.2025.3607270","DOIUrl":null,"url":null,"abstract":"Function Call Graph (FCG) based Android malware detectors can achieve satisfactory detection performance but are vulnerable to adversarial examples (AEs). Existing adversarial attacks generate AEs separately and specifically for different APKs (termed as APK-specific attacks), resulting in significant computational overhead and limited attack efficiency. In this paper, we propose an APK-Agnostic Adversarial Attack Method (termed as A4M) for FCG-based Android malware detection, enabling the deployment of large-scale malware adversarial examples. Meanwhile, this perturbation can also greatly accelerate existing APK-specific attacks. We conduct extensive experiments to evaluate the effectiveness and efficiency of A4M. A4M achieves an average attack success rate (ASR) of 85.17% on 7 target detectors (built with MAMADroid, APIGraph and GNN), significantly surpassing the state-of-the- art attack MalPatch by 28.17%. Experiments also demonstrate A4M can markedly accelerate the APK-specific attacks HIV_CW, HIV_JSMA and DQN, reducing about 88 queries per adversarial example.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"9413-9426"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Adversarial Attack on FCG-Based Android Malware Detection Systems\",\"authors\":\"Heng Li;Bang Wu;Wei Zhou;Wei Yuan;Cuiying Gao;Xinge You;Xiapu Luo\",\"doi\":\"10.1109/TIFS.2025.3607270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Function Call Graph (FCG) based Android malware detectors can achieve satisfactory detection performance but are vulnerable to adversarial examples (AEs). Existing adversarial attacks generate AEs separately and specifically for different APKs (termed as APK-specific attacks), resulting in significant computational overhead and limited attack efficiency. In this paper, we propose an APK-Agnostic Adversarial Attack Method (termed as A4M) for FCG-based Android malware detection, enabling the deployment of large-scale malware adversarial examples. Meanwhile, this perturbation can also greatly accelerate existing APK-specific attacks. We conduct extensive experiments to evaluate the effectiveness and efficiency of A4M. A4M achieves an average attack success rate (ASR) of 85.17% on 7 target detectors (built with MAMADroid, APIGraph and GNN), significantly surpassing the state-of-the- art attack MalPatch by 28.17%. Experiments also demonstrate A4M can markedly accelerate the APK-specific attacks HIV_CW, HIV_JSMA and DQN, reducing about 88 queries per adversarial example.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"9413-9426\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153502/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11153502/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基于函数调用图(Function Call Graph, FCG)的Android恶意软件检测器可以实现令人满意的检测性能,但容易受到对抗性示例(AEs)的攻击。现有的对抗性攻击分别针对不同的apk生成ae(称为apk特异性攻击),导致大量的计算开销和有限的攻击效率。在本文中,我们提出了一种基于fcg的Android恶意软件检测的apk不可知对抗性攻击方法(称为A4M),使大规模恶意软件对抗性示例的部署成为可能。同时,这种扰动也会大大加速现有的apk特异性攻击。我们进行了大量的实验来评估A4M的有效性和效率。A4M在7个目标检测器(由MAMADroid、APIGraph和GNN构建)上实现了85.17%的平均攻击成功率(ASR),显著超过了最先进的攻击MalPatch 28.17%。实验还表明,A4M可以显著加速apk特异性攻击HIV_CW、HIV_JSMA和DQN,每个对抗实例减少88次查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Adversarial Attack on FCG-Based Android Malware Detection Systems
Function Call Graph (FCG) based Android malware detectors can achieve satisfactory detection performance but are vulnerable to adversarial examples (AEs). Existing adversarial attacks generate AEs separately and specifically for different APKs (termed as APK-specific attacks), resulting in significant computational overhead and limited attack efficiency. In this paper, we propose an APK-Agnostic Adversarial Attack Method (termed as A4M) for FCG-based Android malware detection, enabling the deployment of large-scale malware adversarial examples. Meanwhile, this perturbation can also greatly accelerate existing APK-specific attacks. We conduct extensive experiments to evaluate the effectiveness and efficiency of A4M. A4M achieves an average attack success rate (ASR) of 85.17% on 7 target detectors (built with MAMADroid, APIGraph and GNN), significantly surpassing the state-of-the- art attack MalPatch by 28.17%. Experiments also demonstrate A4M can markedly accelerate the APK-specific attacks HIV_CW, HIV_JSMA and DQN, reducing about 88 queries per adversarial example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信