分布感知硬件木马检测

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Luke Chen;Youssef Gamal;Yanda Li;Shih-Yuan Yu;Ihsen Alouani;Mohammad Abdullah Al Faruque
{"title":"分布感知硬件木马检测","authors":"Luke Chen;Youssef Gamal;Yanda Li;Shih-Yuan Yu;Ihsen Alouani;Mohammad Abdullah Al Faruque","doi":"10.1109/TIFS.2025.3607240","DOIUrl":null,"url":null,"abstract":"Machine Learning (ML) has proven effective in Integrated Circuits (IC) security, particularly in Hardware Trojan (HT) detection. However, a model’s generalization potential depends on its ability to address distribution shifts (DS) in unseen data. Mitigating DS enhances a model’s adaptability to novel variations and threats within the dynamic realm of IC designs and HTs. We formulate HT detection as a DS problem, introducing DART, a novel Distribution-Aware HT detection framework, to enhance model generalization. Applying DART on state-of-the-art Graph Neural Network architecture yields up to 22.96% and 17.37% F1-score improvements for unseen IC designs diverging significantly from the training data.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"9600-9609"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DART: Distribution-Aware Hardware Trojan Detection\",\"authors\":\"Luke Chen;Youssef Gamal;Yanda Li;Shih-Yuan Yu;Ihsen Alouani;Mohammad Abdullah Al Faruque\",\"doi\":\"10.1109/TIFS.2025.3607240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning (ML) has proven effective in Integrated Circuits (IC) security, particularly in Hardware Trojan (HT) detection. However, a model’s generalization potential depends on its ability to address distribution shifts (DS) in unseen data. Mitigating DS enhances a model’s adaptability to novel variations and threats within the dynamic realm of IC designs and HTs. We formulate HT detection as a DS problem, introducing DART, a novel Distribution-Aware HT detection framework, to enhance model generalization. Applying DART on state-of-the-art Graph Neural Network architecture yields up to 22.96% and 17.37% F1-score improvements for unseen IC designs diverging significantly from the training data.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"9600-9609\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11153518/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11153518/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)在集成电路(IC)安全方面已被证明是有效的,特别是在硬件木马(HT)检测方面。然而,模型的泛化潜力取决于它在不可见数据中处理分布变化(DS)的能力。缓解DS增强了模型对IC设计和ht动态领域中的新变化和威胁的适应性。我们将高温检测作为一个DS问题,引入了一种新的分布感知高温检测框架DART,以增强模型的泛化。在最先进的图神经网络架构上应用DART,对于与训练数据显著偏离的未见IC设计,f1分数提高了22.96%和17.37%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DART: Distribution-Aware Hardware Trojan Detection
Machine Learning (ML) has proven effective in Integrated Circuits (IC) security, particularly in Hardware Trojan (HT) detection. However, a model’s generalization potential depends on its ability to address distribution shifts (DS) in unseen data. Mitigating DS enhances a model’s adaptability to novel variations and threats within the dynamic realm of IC designs and HTs. We formulate HT detection as a DS problem, introducing DART, a novel Distribution-Aware HT detection framework, to enhance model generalization. Applying DART on state-of-the-art Graph Neural Network architecture yields up to 22.96% and 17.37% F1-score improvements for unseen IC designs diverging significantly from the training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信