超越SMILES枚举在生成药物发现中的数据增强。

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Helena Brinkmann, Antoine Argante, Hugo ter Steege and Francesca Grisoni
{"title":"超越SMILES枚举在生成药物发现中的数据增强。","authors":"Helena Brinkmann, Antoine Argante, Hugo ter Steege and Francesca Grisoni","doi":"10.1039/D5DD00028A","DOIUrl":null,"url":null,"abstract":"<p >Data augmentation can alleviate the limitations of small molecular datasets for generative deep learning by ‘artificially inflating’ the number of instances available for training. SMILES enumeration – wherein multiple valid SMILES strings are used to represent the same molecules – has become particularly beneficial to improve the quality of <em>de novo</em> molecule design. Herein, we investigated whether rethinking SMILES augmentation techniques could further enhance the quality of <em>de novo</em> design. To this end, we introduce four novel approaches for SMILES augmentation, drawing inspiration from natural language processing and chemistry insights: (a) token deletion, (b) atom masking, (c) bioisosteric substitution, and (d) self-training. <em>Via</em> systematic analysis, our results showed the promise of considering additional strategies for SMILES augmentation. Every strategy showed distinct advantages; for example, atom masking is particularly promising to learn desirable physico-chemical properties in very low-data regimes, and deletion to create novel scaffolds. This new repertoire of SMILES augmentation strategies expands the available toolkit to design molecules with bespoke properties in low-data scenarios.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 10","pages":" 2752-2764"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409607/pdf/","citationCount":"0","resultStr":"{\"title\":\"Going beyond SMILES enumeration for data augmentation in generative drug discovery\",\"authors\":\"Helena Brinkmann, Antoine Argante, Hugo ter Steege and Francesca Grisoni\",\"doi\":\"10.1039/D5DD00028A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Data augmentation can alleviate the limitations of small molecular datasets for generative deep learning by ‘artificially inflating’ the number of instances available for training. SMILES enumeration – wherein multiple valid SMILES strings are used to represent the same molecules – has become particularly beneficial to improve the quality of <em>de novo</em> molecule design. Herein, we investigated whether rethinking SMILES augmentation techniques could further enhance the quality of <em>de novo</em> design. To this end, we introduce four novel approaches for SMILES augmentation, drawing inspiration from natural language processing and chemistry insights: (a) token deletion, (b) atom masking, (c) bioisosteric substitution, and (d) self-training. <em>Via</em> systematic analysis, our results showed the promise of considering additional strategies for SMILES augmentation. Every strategy showed distinct advantages; for example, atom masking is particularly promising to learn desirable physico-chemical properties in very low-data regimes, and deletion to create novel scaffolds. This new repertoire of SMILES augmentation strategies expands the available toolkit to design molecules with bespoke properties in low-data scenarios.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 10\",\"pages\":\" 2752-2764\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00028a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00028a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

数据增强可以通过“人为膨胀”可用于训练的实例数量来缓解小分子数据集对生成式深度学习的限制。SMILES枚举——其中使用多个有效的SMILES字符串来表示相同的分子——对于提高从头分子设计的质量特别有益。在此,我们研究了重新思考smile增强技术是否可以进一步提高从头设计的质量。为此,我们从自然语言处理和化学见解中汲取灵感,引入了四种增强SMILES的新方法:(a)标记删除,(b)原子掩蔽,(c)生物等构取代和(d)自我训练。通过系统分析,我们的结果显示了考虑其他增强SMILES策略的希望。每种策略都有其独特的优势;例如,原子掩蔽特别有希望在非常低数据的情况下学习所需的物理化学性质,并删除以创建新的支架。这种新的smile增强策略扩展了可用的工具包,可以在低数据情况下设计具有定制属性的分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Going beyond SMILES enumeration for data augmentation in generative drug discovery

Going beyond SMILES enumeration for data augmentation in generative drug discovery

Data augmentation can alleviate the limitations of small molecular datasets for generative deep learning by ‘artificially inflating’ the number of instances available for training. SMILES enumeration – wherein multiple valid SMILES strings are used to represent the same molecules – has become particularly beneficial to improve the quality of de novo molecule design. Herein, we investigated whether rethinking SMILES augmentation techniques could further enhance the quality of de novo design. To this end, we introduce four novel approaches for SMILES augmentation, drawing inspiration from natural language processing and chemistry insights: (a) token deletion, (b) atom masking, (c) bioisosteric substitution, and (d) self-training. Via systematic analysis, our results showed the promise of considering additional strategies for SMILES augmentation. Every strategy showed distinct advantages; for example, atom masking is particularly promising to learn desirable physico-chemical properties in very low-data regimes, and deletion to create novel scaffolds. This new repertoire of SMILES augmentation strategies expands the available toolkit to design molecules with bespoke properties in low-data scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信