FetalMLOps:实现标准胎儿超声平面分类的机器学习模型。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio
{"title":"FetalMLOps:实现标准胎儿超声平面分类的机器学习模型。","authors":"Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio","doi":"10.1007/s11517-025-03436-5","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.\",\"authors\":\"Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio\",\"doi\":\"10.1007/s11517-025-03436-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03436-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03436-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

胎儿标准平面检测在产前护理中是必不可少的,能够准确评估胎儿发育和早期识别潜在的异常。尽管机器学习(ML)在该领域取得了重大进展,但其与临床工作流程的集成仍然有限,主要原因是缺乏标准化的端到端操作框架。为了解决这一差距,我们介绍了FetalMLOps,这是第一个专门为胎儿超声成像设计的综合MLOps框架。我们的方法采用十步MLOps方法,涵盖整个ML生命周期,每个阶段都精心适应临床需求。从定义临床目标到管理和注释胎儿美国数据集,每一步都确保与现实世界的医疗实践保持一致。开发ETL(提取、转换、加载)流程是为了标准化、匿名化和协调输入,从而提高数据质量。模型开发优先考虑平衡准确性和效率的架构,使用临床相关的评估指标来指导选择。性能最好的模型是通过RESTful API部署的,遵循MLOps的持续集成、交付和性能监视的最佳实践。至关重要的是,该框架嵌入了可解释性和环境可持续性原则,促进了道德、透明和负责任的人工智能。通过在临床有意义的管道中操作ML模型,FetalMLOps弥合了算法创新和现实应用之间的差距,为产前护理中可信赖和可扩展的人工智能采用开创了先例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.

Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信