Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio
{"title":"FetalMLOps:实现标准胎儿超声平面分类的机器学习模型。","authors":"Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio","doi":"10.1007/s11517-025-03436-5","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.\",\"authors\":\"Matteo Testi, Maria Chiara Fiorentino, Matteo Ballabio, Giorgio Visani, Massimo Ciccozzi, Emanuele Frontoni, Sara Moccia, Gennaro Vessio\",\"doi\":\"10.1007/s11517-025-03436-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03436-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03436-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
FetalMLOps: operationalizing machine learning models for standard fetal ultrasound plane classification.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging. Our approach adopts a ten-step MLOps methodology that covers the entire ML lifecycle, with each phase meticulously adapted to clinical needs. From defining the clinical objective to curating and annotating fetal US datasets, every step ensures alignment with real-world medical practice. ETL (extract, transform, load) processes are developed to standardize, anonymize, and harmonize inputs, enhancing data quality. Model development prioritizes architectures that balance accuracy and efficiency, using clinically relevant evaluation metrics to guide selection. The best-performing model is deployed via a RESTful API, following MLOps best practices for continuous integration, delivery, and performance monitoring. Crucially, the framework embeds principles of explainability and environmental sustainability, promoting ethical, transparent, and responsible AI. By operationalizing ML models within a clinically meaningful pipeline, FetalMLOps bridges the gap between algorithmic innovation and real-world application, setting a precedent for trustworthy and scalable AI adoption in prenatal care.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).