{"title":"肾脏学中的大型语言模型:在慢性肾脏疾病管理中的应用和挑战。","authors":"Yongzheng Hu, Jianping Liu, Wei Jiang","doi":"10.1080/0886022X.2025.2555686","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice. Early reports suggest that LLMs can improve health literacy, facilitate adherence to complex treatment regimens, and reduce administrative burdens for clinicians. However, the rapid deployment of these technologies raises important challenges, including patient privacy, data security, model accuracy, algorithmic bias, and ethical accountability. Moreover, real-world evidence supporting the safety and effectiveness of LLMs in nephrology remains limited. Addressing these challenges will require rigorous validation, robust regulatory frameworks, and ongoing collaboration between clinicians, AI developers, and patients. As LLMs continue to evolve, future efforts should focus on the development of nephrology-specific models, prospective clinical trials, and strategies to ensure equitable and transparent implementation. If appropriately integrated, LLMs have the potential to reshape the landscape of CKD care and education, improving outcomes for patients and supporting the nephrology workforce in an era of increasing complexity.</p>","PeriodicalId":20839,"journal":{"name":"Renal Failure","volume":"47 1","pages":"2555686"},"PeriodicalIF":3.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large language models in nephrology: applications and challenges in chronic kidney disease management.\",\"authors\":\"Yongzheng Hu, Jianping Liu, Wei Jiang\",\"doi\":\"10.1080/0886022X.2025.2555686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice. Early reports suggest that LLMs can improve health literacy, facilitate adherence to complex treatment regimens, and reduce administrative burdens for clinicians. However, the rapid deployment of these technologies raises important challenges, including patient privacy, data security, model accuracy, algorithmic bias, and ethical accountability. Moreover, real-world evidence supporting the safety and effectiveness of LLMs in nephrology remains limited. Addressing these challenges will require rigorous validation, robust regulatory frameworks, and ongoing collaboration between clinicians, AI developers, and patients. As LLMs continue to evolve, future efforts should focus on the development of nephrology-specific models, prospective clinical trials, and strategies to ensure equitable and transparent implementation. If appropriately integrated, LLMs have the potential to reshape the landscape of CKD care and education, improving outcomes for patients and supporting the nephrology workforce in an era of increasing complexity.</p>\",\"PeriodicalId\":20839,\"journal\":{\"name\":\"Renal Failure\",\"volume\":\"47 1\",\"pages\":\"2555686\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renal Failure\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/0886022X.2025.2555686\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renal Failure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/0886022X.2025.2555686","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Large language models in nephrology: applications and challenges in chronic kidney disease management.
Large language models (LLMs) represent a transformative advance in artificial intelligence, with growing potential to impact chronic kidney disease (CKD) management. CKD is a complex, highly prevalent condition requiring multifaceted care and substantial patient engagement. Recent developments in LLMs-including conversational AI, multimodal integration, and autonomous agents-offer novel opportunities to enhance patient education, streamline clinical documentation, and support decision-making across nephrology practice. Early reports suggest that LLMs can improve health literacy, facilitate adherence to complex treatment regimens, and reduce administrative burdens for clinicians. However, the rapid deployment of these technologies raises important challenges, including patient privacy, data security, model accuracy, algorithmic bias, and ethical accountability. Moreover, real-world evidence supporting the safety and effectiveness of LLMs in nephrology remains limited. Addressing these challenges will require rigorous validation, robust regulatory frameworks, and ongoing collaboration between clinicians, AI developers, and patients. As LLMs continue to evolve, future efforts should focus on the development of nephrology-specific models, prospective clinical trials, and strategies to ensure equitable and transparent implementation. If appropriately integrated, LLMs have the potential to reshape the landscape of CKD care and education, improving outcomes for patients and supporting the nephrology workforce in an era of increasing complexity.
期刊介绍:
Renal Failure primarily concentrates on acute renal injury and its consequence, but also addresses advances in the fields of chronic renal failure, hypertension, and renal transplantation. Bringing together both clinical and experimental aspects of renal failure, this publication presents timely, practical information on pathology and pathophysiology of acute renal failure; nephrotoxicity of drugs and other substances; prevention, treatment, and therapy of renal failure; renal failure in association with transplantation, hypertension, and diabetes mellitus.