Fabian Scheurer, Alexander Hammer, Mario Schubert, Robert-Patrick Steiner, Oliver Gamm, Kaomei Guan, Frank Sonntag, Hagen Malberg, Martin Schmidt
{"title":"基于光学成熟度特征的iPSC-CMs无创成熟度评估","authors":"Fabian Scheurer, Alexander Hammer, Mario Schubert, Robert-Patrick Steiner, Oliver Gamm, Kaomei Guan, Frank Sonntag, Hagen Malberg, Martin Schmidt","doi":"10.1016/j.csbj.2025.08.024","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs. Nevertheless, they face substantial limitations as there are labor-intensive, time consuming and go in line with cell damage or loss of the sample. To address this issue, we have developed a non-invasive approach for automated classification of iPSC-CM maturity through interpretable artificial intelligence (AI)-based analysis of beat characteristics derived from video-based motion analysis. In a prospective study, we evaluated 230 video recordings of early-state, immature iPSC-CMs on day 21 after differentiation (d21) and more mature iPSC-CMs cultured in MM (d42, MM). For each recording, 10 features were extracted using Maia motion analysis software and entered into a support vector machine (SVM). The hyperparameters of the SVM were optimized in a grid search on 80 % of the data using 5-fold cross-validation. The optimized model achieved an accuracy of 99.5 ± 1.1 % on a hold-out test set. Shapley Additive Explanations (SHAP) identified displacement, relaxation-rise time and beating duration as the most relevant features for assessing iPSC-CM maturity. Our results suggest the use of non-invasive, optical motion analysis combined with AI-based methods as a tool to assess iPSC-CMs maturity and could be applied before performing functional readouts or drug testing. This may potentially reduce the variability and improve the reproducibility of experimental studies.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"3719-3728"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-invasive maturity assessment of iPSC-CMs based on optical maturity characteristics using interpretable AI.\",\"authors\":\"Fabian Scheurer, Alexander Hammer, Mario Schubert, Robert-Patrick Steiner, Oliver Gamm, Kaomei Guan, Frank Sonntag, Hagen Malberg, Martin Schmidt\",\"doi\":\"10.1016/j.csbj.2025.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs. Nevertheless, they face substantial limitations as there are labor-intensive, time consuming and go in line with cell damage or loss of the sample. To address this issue, we have developed a non-invasive approach for automated classification of iPSC-CM maturity through interpretable artificial intelligence (AI)-based analysis of beat characteristics derived from video-based motion analysis. In a prospective study, we evaluated 230 video recordings of early-state, immature iPSC-CMs on day 21 after differentiation (d21) and more mature iPSC-CMs cultured in MM (d42, MM). For each recording, 10 features were extracted using Maia motion analysis software and entered into a support vector machine (SVM). The hyperparameters of the SVM were optimized in a grid search on 80 % of the data using 5-fold cross-validation. The optimized model achieved an accuracy of 99.5 ± 1.1 % on a hold-out test set. Shapley Additive Explanations (SHAP) identified displacement, relaxation-rise time and beating duration as the most relevant features for assessing iPSC-CM maturity. Our results suggest the use of non-invasive, optical motion analysis combined with AI-based methods as a tool to assess iPSC-CMs maturity and could be applied before performing functional readouts or drug testing. This may potentially reduce the variability and improve the reproducibility of experimental studies.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"3719-3728\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.08.024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.08.024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Non-invasive maturity assessment of iPSC-CMs based on optical maturity characteristics using interpretable AI.
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs. Nevertheless, they face substantial limitations as there are labor-intensive, time consuming and go in line with cell damage or loss of the sample. To address this issue, we have developed a non-invasive approach for automated classification of iPSC-CM maturity through interpretable artificial intelligence (AI)-based analysis of beat characteristics derived from video-based motion analysis. In a prospective study, we evaluated 230 video recordings of early-state, immature iPSC-CMs on day 21 after differentiation (d21) and more mature iPSC-CMs cultured in MM (d42, MM). For each recording, 10 features were extracted using Maia motion analysis software and entered into a support vector machine (SVM). The hyperparameters of the SVM were optimized in a grid search on 80 % of the data using 5-fold cross-validation. The optimized model achieved an accuracy of 99.5 ± 1.1 % on a hold-out test set. Shapley Additive Explanations (SHAP) identified displacement, relaxation-rise time and beating duration as the most relevant features for assessing iPSC-CM maturity. Our results suggest the use of non-invasive, optical motion analysis combined with AI-based methods as a tool to assess iPSC-CMs maturity and could be applied before performing functional readouts or drug testing. This may potentially reduce the variability and improve the reproducibility of experimental studies.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology