具有一般发病和多重延迟的HIV潜伏感染模型的动力学分析。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0276462
Yu Yang, Lan Zou
{"title":"具有一般发病和多重延迟的HIV潜伏感染模型的动力学分析。","authors":"Yu Yang, Lan Zou","doi":"10.1063/5.0276462","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1. In addition, the global stability of the infection equilibrium is also derived under certain conditions. Furthermore, we apply the geometric method to analyze the obtained characteristic equation and find that stability of the infection equilibrium may change in some special cases when the assumptions are not valid. Sensitive analysis is performed to investigate the dependence of R0 on parameters. Applications and numerical simulations are also in accordance with the qualitative results.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical analysis of a latent HIV infection model with general incidence and multiple delays.\",\"authors\":\"Yu Yang, Lan Zou\",\"doi\":\"10.1063/5.0276462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1. In addition, the global stability of the infection equilibrium is also derived under certain conditions. Furthermore, we apply the geometric method to analyze the obtained characteristic equation and find that stability of the infection equilibrium may change in some special cases when the assumptions are not valid. Sensitive analysis is performed to investigate the dependence of R0 on parameters. Applications and numerical simulations are also in accordance with the qualitative results.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0276462\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0276462","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个具有一般发生率和三个分布延迟的一般潜伏性HIV感染模型。首先对所提模型进行分析,建立解的正性和有界性,计算基本再现数R0。然后,我们证明了当R01时,无感染平衡点是全局渐近稳定的。此外,在一定条件下,还得到了感染平衡的全局稳定性。进一步应用几何方法对所得到的特征方程进行分析,发现在某些特殊情况下,当假设不成立时,感染平衡的稳定性会发生变化。进行敏感性分析以研究R0对参数的依赖性。应用和数值模拟结果与定性结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical analysis of a latent HIV infection model with general incidence and multiple delays.

In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1. In addition, the global stability of the infection equilibrium is also derived under certain conditions. Furthermore, we apply the geometric method to analyze the obtained characteristic equation and find that stability of the infection equilibrium may change in some special cases when the assumptions are not valid. Sensitive analysis is performed to investigate the dependence of R0 on parameters. Applications and numerical simulations are also in accordance with the qualitative results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信