基于平面度的大耗散和尺寸失配混沌系统广义同步控制。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0276030
Christophe Letellier, Ludovico Minati, Jean-Pierre Barbot, Irene Sendiña-Nadal, I Leyva
{"title":"基于平面度的大耗散和尺寸失配混沌系统广义同步控制。","authors":"Christophe Letellier, Ludovico Minati, Jean-Pierre Barbot, Irene Sendiña-Nadal, I Leyva","doi":"10.1063/5.0276030","DOIUrl":null,"url":null,"abstract":"<p><p>A flat control law is based on the structural analysis of a controlled system, allowing optimal placement of sensors and actuators. Once designed, any desired dynamics can be imposed onto the system. When the target dynamics comes from a system structurally different from the controlled one, generalized synchronization can be achieved, provided the control gain is sufficiently large. As the gain increases, various relationships emerge between the drive and response systems, depending on differences in their dimensions and dissipation rates. The principal contribution of this work lies in the exploration of drive-response system pairs with varying dimensions (ranging from 2 to 4) and dissipation levels, including combinations of dissipative and conservative systems. We identify several types of generalized synchronization, using a classification based on the thickness of the resulting Lissajous curves and the lack of conjugacy between the first-return maps of the drive and response systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flatness-based control for generalized synchronization of chaotic systems with large dissipation and dimension mismatch.\",\"authors\":\"Christophe Letellier, Ludovico Minati, Jean-Pierre Barbot, Irene Sendiña-Nadal, I Leyva\",\"doi\":\"10.1063/5.0276030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A flat control law is based on the structural analysis of a controlled system, allowing optimal placement of sensors and actuators. Once designed, any desired dynamics can be imposed onto the system. When the target dynamics comes from a system structurally different from the controlled one, generalized synchronization can be achieved, provided the control gain is sufficiently large. As the gain increases, various relationships emerge between the drive and response systems, depending on differences in their dimensions and dissipation rates. The principal contribution of this work lies in the exploration of drive-response system pairs with varying dimensions (ranging from 2 to 4) and dissipation levels, including combinations of dissipative and conservative systems. We identify several types of generalized synchronization, using a classification based on the thickness of the resulting Lissajous curves and the lack of conjugacy between the first-return maps of the drive and response systems.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0276030\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0276030","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

平面控制律基于被控系统的结构分析,允许传感器和执行器的最佳位置。一旦设计好,任何期望的动态都可以施加到系统上。当目标动力学来自与被控系统结构不同的系统时,只要控制增益足够大,就可以实现广义同步。随着增益的增加,驱动系统和响应系统之间出现了各种关系,这取决于它们的尺寸和耗散率的差异。这项工作的主要贡献在于探索具有不同维度(从2到4)和耗散水平的驱动响应系统对,包括耗散和保守系统的组合。我们识别了几种类型的广义同步,使用基于产生的Lissajous曲线的厚度和驱动系统和响应系统的第一返回映射之间缺乏共轭的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flatness-based control for generalized synchronization of chaotic systems with large dissipation and dimension mismatch.

A flat control law is based on the structural analysis of a controlled system, allowing optimal placement of sensors and actuators. Once designed, any desired dynamics can be imposed onto the system. When the target dynamics comes from a system structurally different from the controlled one, generalized synchronization can be achieved, provided the control gain is sufficiently large. As the gain increases, various relationships emerge between the drive and response systems, depending on differences in their dimensions and dissipation rates. The principal contribution of this work lies in the exploration of drive-response system pairs with varying dimensions (ranging from 2 to 4) and dissipation levels, including combinations of dissipative and conservative systems. We identify several types of generalized synchronization, using a classification based on the thickness of the resulting Lissajous curves and the lack of conjugacy between the first-return maps of the drive and response systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信