Imran Noorani, Magnus Haughey, Jens Luebeck, Andrew Rowan, Eva Grönroos, Francesco Terenzi, Ivy Tsz-Lo Wong, Davide Pradella, Marta Lisi, Jeanette Kittel, Natasha Sharma, Chris Bailey, Clare E Weeden, Donald M Bell, Eric Joo, Vittorio Barbè, Matthew G Jones, King L Hung, Emma L Nye, Mary Green, Lucy Meader, Emma J Norton, Mark Fabian, Nnennaya Kanu, Mariam Jamal-Hanjani, Thomas Santarius, Andrea Ventura, James A R Nicoll, Delphine Boche, Howard Y Chang, Vineet Bafna, Weini Huang, Paul S Mischel, Charles Swanton, Benjamin Werner
{"title":"胶质母细胞瘤染色体外dna驱动的癌基因空间异质性和进化。","authors":"Imran Noorani, Magnus Haughey, Jens Luebeck, Andrew Rowan, Eva Grönroos, Francesco Terenzi, Ivy Tsz-Lo Wong, Davide Pradella, Marta Lisi, Jeanette Kittel, Natasha Sharma, Chris Bailey, Clare E Weeden, Donald M Bell, Eric Joo, Vittorio Barbè, Matthew G Jones, King L Hung, Emma L Nye, Mary Green, Lucy Meader, Emma J Norton, Mark Fabian, Nnennaya Kanu, Mariam Jamal-Hanjani, Thomas Santarius, Andrea Ventura, James A R Nicoll, Delphine Boche, Howard Y Chang, Vineet Bafna, Weini Huang, Paul S Mischel, Charles Swanton, Benjamin Werner","doi":"10.1158/2159-8290.CD-24-1555","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA. We observe oncogene-specific patterns of ecDNA spatial heterogeneity, emerging from random ecDNA segregation and differing fitness advantages. Unlike PDGFRA-ecDNAs, EGFR-ecDNAs often accumulate prior to clonal expansions, conferring strong fitness advantages and reaching high abundances. In corroboration, we observe pretumor ecDNA accumulation in vivo in genetically engineered mouse neural stem cells. Variant and wild-type EGFR-ecDNAs often coexist in GBM. Those variant EGFR-ecDNAs, most commonly EGFRvIII-ecDNA, always derive from preexisting wild-type EGFR-ecDNAs, occur early, and reach high abundance. Our results suggest that the ecDNA oncogenic makeup determines unique evolutionary trajectories. New concepts such as ecDNA clonality and heteroplasmy require a refined evolutionary interpretation of genomic data in a large subset of GBMs.</p><p><strong>Significance: </strong>We study spatial patterns of ecDNA-amplified oncogenes and their evolutionary properties in human GBM, revealing an ecDNA landscape and ecDNA oncogene-specific evolutionary histories. ecDNA accumulation can precede clonal expansion, facilitating the emergence of EGFR oncogenic variants, reframing our interpretation of genomic data in a large subset of GBMs. See related article by Korsah et al., p. XX.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"OF1-OF18"},"PeriodicalIF":33.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.\",\"authors\":\"Imran Noorani, Magnus Haughey, Jens Luebeck, Andrew Rowan, Eva Grönroos, Francesco Terenzi, Ivy Tsz-Lo Wong, Davide Pradella, Marta Lisi, Jeanette Kittel, Natasha Sharma, Chris Bailey, Clare E Weeden, Donald M Bell, Eric Joo, Vittorio Barbè, Matthew G Jones, King L Hung, Emma L Nye, Mary Green, Lucy Meader, Emma J Norton, Mark Fabian, Nnennaya Kanu, Mariam Jamal-Hanjani, Thomas Santarius, Andrea Ventura, James A R Nicoll, Delphine Boche, Howard Y Chang, Vineet Bafna, Weini Huang, Paul S Mischel, Charles Swanton, Benjamin Werner\",\"doi\":\"10.1158/2159-8290.CD-24-1555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA. We observe oncogene-specific patterns of ecDNA spatial heterogeneity, emerging from random ecDNA segregation and differing fitness advantages. Unlike PDGFRA-ecDNAs, EGFR-ecDNAs often accumulate prior to clonal expansions, conferring strong fitness advantages and reaching high abundances. In corroboration, we observe pretumor ecDNA accumulation in vivo in genetically engineered mouse neural stem cells. Variant and wild-type EGFR-ecDNAs often coexist in GBM. Those variant EGFR-ecDNAs, most commonly EGFRvIII-ecDNA, always derive from preexisting wild-type EGFR-ecDNAs, occur early, and reach high abundance. Our results suggest that the ecDNA oncogenic makeup determines unique evolutionary trajectories. New concepts such as ecDNA clonality and heteroplasmy require a refined evolutionary interpretation of genomic data in a large subset of GBMs.</p><p><strong>Significance: </strong>We study spatial patterns of ecDNA-amplified oncogenes and their evolutionary properties in human GBM, revealing an ecDNA landscape and ecDNA oncogene-specific evolutionary histories. ecDNA accumulation can precede clonal expansion, facilitating the emergence of EGFR oncogenic variants, reframing our interpretation of genomic data in a large subset of GBMs. See related article by Korsah et al., p. XX.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"OF1-OF18\"},\"PeriodicalIF\":33.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-24-1555\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-1555","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Extrachromosomal DNA-Driven Oncogene Spatial Heterogeneity and Evolution in Glioblastoma.
Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA. We observe oncogene-specific patterns of ecDNA spatial heterogeneity, emerging from random ecDNA segregation and differing fitness advantages. Unlike PDGFRA-ecDNAs, EGFR-ecDNAs often accumulate prior to clonal expansions, conferring strong fitness advantages and reaching high abundances. In corroboration, we observe pretumor ecDNA accumulation in vivo in genetically engineered mouse neural stem cells. Variant and wild-type EGFR-ecDNAs often coexist in GBM. Those variant EGFR-ecDNAs, most commonly EGFRvIII-ecDNA, always derive from preexisting wild-type EGFR-ecDNAs, occur early, and reach high abundance. Our results suggest that the ecDNA oncogenic makeup determines unique evolutionary trajectories. New concepts such as ecDNA clonality and heteroplasmy require a refined evolutionary interpretation of genomic data in a large subset of GBMs.
Significance: We study spatial patterns of ecDNA-amplified oncogenes and their evolutionary properties in human GBM, revealing an ecDNA landscape and ecDNA oncogene-specific evolutionary histories. ecDNA accumulation can precede clonal expansion, facilitating the emergence of EGFR oncogenic variants, reframing our interpretation of genomic data in a large subset of GBMs. See related article by Korsah et al., p. XX.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.