求助PDF
{"title":"一类具有势非线性和组合非线性的分数阶Choquard方程的归一化解","authors":"Peng Ji, Fangqi Chen","doi":"10.1002/mma.11171","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the following fractional Choquard equation: \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>V</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mi>u</mi>\n <mo>+</mo>\n <mi>λ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n <mo>∗</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n </msup>\n <mo>)</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\Delta \\right)}&amp;amp;#x0005E;su&amp;amp;#x0002B;V(x)u&amp;amp;#x0002B;\\lambda u&amp;amp;#x0003D;\\left({I}_{\\alpha}\\ast {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;#x0005E;{\\ast }}\\right){\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;#x0005E;{\\ast }-2}u&amp;amp;#x0002B;\\mu {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u,\\kern0.60em x\\in {\\mathbb{R}}&amp;amp;#x0005E;N $$</annotation>\n </semantics></math>, with prescribed mass \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\int}_{{\\mathbb{R}}&amp;amp;#x0005E;N}{\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;2 dx&amp;amp;#x0003D;{a}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math>, where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>></mo>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <mo>></mo>\n <mi>s</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo><</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mn>4</mn>\n <mi>s</mi>\n <mo>}</mo>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ s\\in \\left(0,1\\right),\\mu &amp;gt;0,\\frac{N}{2}&amp;gt;s,0&amp;lt;\\alpha &amp;lt;\\min \\left\\{N,4s\\right\\},\\kern0.3em {I}_{\\alpha } $$</annotation>\n </semantics></math> is the Riesz potential, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation>$$ V $$</annotation>\n </semantics></math> is an external potential vanishing at infinity and the parameter \n<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>∈</mo>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\lambda \\in \\mathbb{R} $$</annotation>\n </semantics></math> arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -subcritical, \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -critical and \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -supercritical perturbation \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n </mrow>\n <annotation>$$ \\mu {\\left&amp;amp;#x0007C;u\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u $$</annotation>\n </semantics></math>, respectively, we obtain several existence results. By limiting the range of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>]</mo>\n </mrow>\n <annotation>$$ q\\in \\left(\\overline{q},{2}_s&amp;amp;#x0005E;{\\ast}\\right] $$</annotation>\n </semantics></math>, we prove that there exists a positive ground state normalized solution for the above problem with \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ a&amp;gt;0 $$</annotation>\n </semantics></math>. Furthermore, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$$ q\\in \\left(2,\\overline{q}\\right) $$</annotation>\n </semantics></math>, we prove that there exists \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {a}_0&amp;gt;0 $$</annotation>\n </semantics></math> such that the normalized solution with negative energy to the above problem can be obtained when \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ a\\in \\left(0,{a}_0\\right) $$</annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14207-14221"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions for a Class of Fractional Choquard Equation With Potential and Combined Nonlinearities\",\"authors\":\"Peng Ji, Fangqi Chen\",\"doi\":\"10.1002/mma.11171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the following fractional Choquard equation: \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>V</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msub>\\n <mo>∗</mo>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>μ</mi>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\Delta \\\\right)}&amp;amp;#x0005E;su&amp;amp;#x0002B;V(x)u&amp;amp;#x0002B;\\\\lambda u&amp;amp;#x0003D;\\\\left({I}_{\\\\alpha}\\\\ast {\\\\left&amp;amp;#x0007C;u\\\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\\\alpha, s}&amp;amp;#x0005E;{\\\\ast }}\\\\right){\\\\left&amp;amp;#x0007C;u\\\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\\\\alpha, s}&amp;amp;#x0005E;{\\\\ast }-2}u&amp;amp;#x0002B;\\\\mu {\\\\left&amp;amp;#x0007C;u\\\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u,\\\\kern0.60em x\\\\in {\\\\mathbb{R}}&amp;amp;#x0005E;N $$</annotation>\\n </semantics></math>, with prescribed mass \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>∫</mo>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <mi>x</mi>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\int}_{{\\\\mathbb{R}}&amp;amp;#x0005E;N}{\\\\left&amp;amp;#x0007C;u\\\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;2 dx&amp;amp;#x0003D;{a}&amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math>, where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n <mo>></mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>α</mi>\\n <mo><</mo>\\n <mi>min</mi>\\n <mo>{</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mn>4</mn>\\n <mi>s</mi>\\n <mo>}</mo>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ s\\\\in \\\\left(0,1\\\\right),\\\\mu &amp;gt;0,\\\\frac{N}{2}&amp;gt;s,0&amp;lt;\\\\alpha &amp;lt;\\\\min \\\\left\\\\{N,4s\\\\right\\\\},\\\\kern0.3em {I}_{\\\\alpha } $$</annotation>\\n </semantics></math> is the Riesz potential, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$$ V $$</annotation>\\n </semantics></math> is an external potential vanishing at infinity and the parameter \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mi>ℝ</mi>\\n </mrow>\\n <annotation>$$ \\\\lambda \\\\in \\\\mathbb{R} $$</annotation>\\n </semantics></math> arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -subcritical, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -critical and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -supercritical perturbation \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n </mrow>\\n <annotation>$$ \\\\mu {\\\\left&amp;amp;#x0007C;u\\\\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u $$</annotation>\\n </semantics></math>, respectively, we obtain several existence results. By limiting the range of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>, for \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mover>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>,</mo>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$$ q\\\\in \\\\left(\\\\overline{q},{2}_s&amp;amp;#x0005E;{\\\\ast}\\\\right] $$</annotation>\\n </semantics></math>, we prove that there exists a positive ground state normalized solution for the above problem with \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ a&amp;gt;0 $$</annotation>\\n </semantics></math>. Furthermore, for \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mover>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ q\\\\in \\\\left(2,\\\\overline{q}\\\\right) $$</annotation>\\n </semantics></math>, we prove that there exists \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ {a}_0&amp;gt;0 $$</annotation>\\n </semantics></math> such that the normalized solution with negative energy to the above problem can be obtained when \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ a\\\\in \\\\left(0,{a}_0\\\\right) $$</annotation>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 15\",\"pages\":\"14207-14221\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.11171\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用