一类具有势非线性和组合非线性的分数阶Choquard方程的归一化解

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Peng Ji, Fangqi Chen
{"title":"一类具有势非线性和组合非线性的分数阶Choquard方程的归一化解","authors":"Peng Ji,&nbsp;Fangqi Chen","doi":"10.1002/mma.11171","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the following fractional Choquard equation: \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>V</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mi>u</mi>\n <mo>+</mo>\n <mi>λ</mi>\n <mi>u</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n <mo>∗</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n </mrow>\n </msup>\n <mo>)</mo>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>+</mo>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n <mo>,</mo>\n <mspace></mspace>\n <mspace></mspace>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\left(-\\Delta \\right)}&amp;amp;amp;#x0005E;su&amp;amp;amp;#x0002B;V(x)u&amp;amp;amp;#x0002B;\\lambda u&amp;amp;amp;#x0003D;\\left({I}_{\\alpha}\\ast {\\left&amp;amp;amp;#x0007C;u\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;amp;#x0005E;{\\ast }}\\right){\\left&amp;amp;amp;#x0007C;u\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{2_{\\alpha, s}&amp;amp;amp;#x0005E;{\\ast }-2}u&amp;amp;amp;#x0002B;\\mu {\\left&amp;amp;amp;#x0007C;u\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{q-2}u,\\kern0.60em x\\in {\\mathbb{R}}&amp;amp;amp;#x0005E;N $$</annotation>\n </semantics></math>, with prescribed mass \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>N</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>d</mi>\n <mi>x</mi>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\int}_{{\\mathbb{R}}&amp;amp;amp;#x0005E;N}{\\left&amp;amp;amp;#x0007C;u\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;2 dx&amp;amp;amp;#x0003D;{a}&amp;amp;amp;#x0005E;2 $$</annotation>\n </semantics></math>, where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </mfrac>\n <mo>&gt;</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>N</mi>\n <mo>,</mo>\n <mn>4</mn>\n <mi>s</mi>\n <mo>}</mo>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>I</mi>\n </mrow>\n <mrow>\n <mi>α</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ s\\in \\left(0,1\\right),\\mu &amp;amp;gt;0,\\frac{N}{2}&amp;amp;gt;s,0&amp;amp;lt;\\alpha &amp;amp;lt;\\min \\left\\{N,4s\\right\\},\\kern0.3em {I}_{\\alpha } $$</annotation>\n </semantics></math> is the Riesz potential, \n<span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n </mrow>\n <annotation>$$ V $$</annotation>\n </semantics></math> is an external potential vanishing at infinity and the parameter \n<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>∈</mo>\n <mi>ℝ</mi>\n </mrow>\n <annotation>$$ \\lambda \\in \\mathbb{R} $$</annotation>\n </semantics></math> arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -subcritical, \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -critical and \n<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\n </semantics></math> -supercritical perturbation \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>|</mo>\n <mi>u</mi>\n <msup>\n <mrow>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mi>u</mi>\n </mrow>\n <annotation>$$ \\mu {\\left&amp;amp;amp;#x0007C;u\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{q-2}u $$</annotation>\n </semantics></math>, respectively, we obtain several existence results. By limiting the range of \n<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation>$$ \\mu $$</annotation>\n </semantics></math>, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mo>∗</mo>\n </mrow>\n </msubsup>\n <mo>]</mo>\n </mrow>\n <annotation>$$ q\\in \\left(\\overline{q},{2}_s&amp;amp;amp;#x0005E;{\\ast}\\right] $$</annotation>\n </semantics></math>, we prove that there exists a positive ground state normalized solution for the above problem with \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ a&amp;amp;gt;0 $$</annotation>\n </semantics></math>. Furthermore, for \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mover>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mo>‾</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <annotation>$$ q\\in \\left(2,\\overline{q}\\right) $$</annotation>\n </semantics></math>, we prove that there exists \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ {a}_0&amp;amp;gt;0 $$</annotation>\n </semantics></math> such that the normalized solution with negative energy to the above problem can be obtained when \n<span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$$ a\\in \\left(0,{a}_0\\right) $$</annotation>\n </semantics></math>.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14207-14221"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Normalized Solutions for a Class of Fractional Choquard Equation With Potential and Combined Nonlinearities\",\"authors\":\"Peng Ji,&nbsp;Fangqi Chen\",\"doi\":\"10.1002/mma.11171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the following fractional Choquard equation: \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>V</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mi>u</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <msub>\\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msub>\\n <mo>∗</mo>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n </msup>\\n <mo>)</mo>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>,</mo>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>+</mo>\\n <mi>μ</mi>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mspace></mspace>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\left(-\\\\Delta \\\\right)}&amp;amp;amp;#x0005E;su&amp;amp;amp;#x0002B;V(x)u&amp;amp;amp;#x0002B;\\\\lambda u&amp;amp;amp;#x0003D;\\\\left({I}_{\\\\alpha}\\\\ast {\\\\left&amp;amp;amp;#x0007C;u\\\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{2_{\\\\alpha, s}&amp;amp;amp;#x0005E;{\\\\ast }}\\\\right){\\\\left&amp;amp;amp;#x0007C;u\\\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{2_{\\\\alpha, s}&amp;amp;amp;#x0005E;{\\\\ast }-2}u&amp;amp;amp;#x0002B;\\\\mu {\\\\left&amp;amp;amp;#x0007C;u\\\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{q-2}u,\\\\kern0.60em x\\\\in {\\\\mathbb{R}}&amp;amp;amp;#x0005E;N $$</annotation>\\n </semantics></math>, with prescribed mass \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>∫</mo>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>d</mi>\\n <mi>x</mi>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\int}_{{\\\\mathbb{R}}&amp;amp;amp;#x0005E;N}{\\\\left&amp;amp;amp;#x0007C;u\\\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;2 dx&amp;amp;amp;#x0003D;{a}&amp;amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math>, where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>,</mo>\\n <mi>μ</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </mfrac>\\n <mo>&gt;</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <mi>min</mi>\\n <mo>{</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n <mn>4</mn>\\n <mi>s</mi>\\n <mo>}</mo>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mrow>\\n <mi>I</mi>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ s\\\\in \\\\left(0,1\\\\right),\\\\mu &amp;amp;gt;0,\\\\frac{N}{2}&amp;amp;gt;s,0&amp;amp;lt;\\\\alpha &amp;amp;lt;\\\\min \\\\left\\\\{N,4s\\\\right\\\\},\\\\kern0.3em {I}_{\\\\alpha } $$</annotation>\\n </semantics></math> is the Riesz potential, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n </mrow>\\n <annotation>$$ V $$</annotation>\\n </semantics></math> is an external potential vanishing at infinity and the parameter \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mi>ℝ</mi>\\n </mrow>\\n <annotation>$$ \\\\lambda \\\\in \\\\mathbb{R} $$</annotation>\\n </semantics></math> arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -subcritical, \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -critical and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {L}&amp;amp;amp;#x0005E;2 $$</annotation>\\n </semantics></math> -supercritical perturbation \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n <mo>|</mo>\\n <mi>u</mi>\\n <msup>\\n <mrow>\\n <mo>|</mo>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <mi>u</mi>\\n </mrow>\\n <annotation>$$ \\\\mu {\\\\left&amp;amp;amp;#x0007C;u\\\\right&amp;amp;amp;#x0007C;}&amp;amp;amp;#x0005E;{q-2}u $$</annotation>\\n </semantics></math>, respectively, we obtain several existence results. By limiting the range of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>$$ \\\\mu $$</annotation>\\n </semantics></math>, for \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mover>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>,</mo>\\n <msubsup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <mrow>\\n <mo>∗</mo>\\n </mrow>\\n </msubsup>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$$ q\\\\in \\\\left(\\\\overline{q},{2}_s&amp;amp;amp;#x0005E;{\\\\ast}\\\\right] $$</annotation>\\n </semantics></math>, we prove that there exists a positive ground state normalized solution for the above problem with \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ a&amp;amp;gt;0 $$</annotation>\\n </semantics></math>. Furthermore, for \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mover>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mo>‾</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ q\\\\in \\\\left(2,\\\\overline{q}\\\\right) $$</annotation>\\n </semantics></math>, we prove that there exists \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ {a}_0&amp;amp;gt;0 $$</annotation>\\n </semantics></math> such that the normalized solution with negative energy to the above problem can be obtained when \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ a\\\\in \\\\left(0,{a}_0\\\\right) $$</annotation>\\n </semantics></math>.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 15\",\"pages\":\"14207-14221\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.11171\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑如下分数阶Choquard方程:(−Δ) s u + V (x) u + λ u = (I α * | u | 2 α,S *) | u |α ,S *−2 u + μ | u | q−2 u, x∈x N $$ {\left(-\Delta \right)}&amp;amp;#x0005E;su&amp;amp;#x0002B;V(x)u&amp;amp; amp;#x0002B;# x0003D \λu&音箱;音箱;;\离开({我}_{α\}\ ast {\ left&音箱;音箱;# x0007C; u \ right&音箱;音箱;# x0007C;}, amp;音箱;# x0005E;{2 _{\α,年代},amp;音箱;# x0005E; {\ ast}} \右){\ left&音箱;音箱;# x0007C; u \ right&音箱;音箱;# x0007C;}, amp;音箱;# x0005E;{2 _{\α,年代},amp;音箱;# x0005E;{\ ast} 2} u&音箱;音箱;# x0002B;μ\ {\ left&音箱;音箱;# x0007C; u \ right&音箱;音箱;# x0007C;}, amp;音箱;# x0005E; {q2} u \ kern0。 通过限制μ $$ \mu $$的取值范围,对于q∈(q),2 s *] $$ q\in \left(\overline{q},{2}_s&amp;amp;amp;#x0005E;{\ast}\right] $$,我们证明了上述问题的正基态归一化解的存在性,其值为&gt; 0 $$ a&amp;amp;gt;0 $$。更进一步,对于q∈(2,q) $$ q\in \left(2,\overline{q}\right) $$,我们证明了存在一个0 &gt; 0 $$ {a}_0&amp;amp;gt;0 $$,使得当a∈时,可以得到上述问题具有负能量的归一化解(0, a 0) $$ a\in \left(0,{a}_0\right) $$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized Solutions for a Class of Fractional Choquard Equation With Potential and Combined Nonlinearities

In this paper, we consider the following fractional Choquard equation: ( Δ ) s u + V ( x ) u + λ u = ( I α | u | 2 α , s ) | u | 2 α , s 2 u + μ | u | q 2 u , x N $$ {\left(-\Delta \right)}&amp;amp;#x0005E;su&amp;amp;#x0002B;V(x)u&amp;amp;#x0002B;\lambda u&amp;amp;#x0003D;\left({I}_{\alpha}\ast {\left&amp;amp;#x0007C;u\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\alpha, s}&amp;amp;#x0005E;{\ast }}\right){\left&amp;amp;#x0007C;u\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{2_{\alpha, s}&amp;amp;#x0005E;{\ast }-2}u&amp;amp;#x0002B;\mu {\left&amp;amp;#x0007C;u\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u,\kern0.60em x\in {\mathbb{R}}&amp;amp;#x0005E;N $$ , with prescribed mass N | u | 2 d x = a 2 $$ {\int}_{{\mathbb{R}}&amp;amp;#x0005E;N}{\left&amp;amp;#x0007C;u\right&amp;amp;#x0007C;}&amp;amp;#x0005E;2 dx&amp;amp;#x0003D;{a}&amp;amp;#x0005E;2 $$ , where s ( 0 , 1 ) , μ > 0 , N 2 > s , 0 < α < min { N , 4 s } , I α $$ s\in \left(0,1\right),\mu &amp;gt;0,\frac{N}{2}&amp;gt;s,0&amp;lt;\alpha &amp;lt;\min \left\{N,4s\right\},\kern0.3em {I}_{\alpha } $$ is the Riesz potential, V $$ V $$ is an external potential vanishing at infinity and the parameter λ $$ \lambda \in \mathbb{R} $$ arises as Lagrange multiplier. The purpose of this paper is to establish the existence of solutions with prescribed norm to this class of nonlinear equations. Under some L 2 $$ {L}&amp;amp;#x0005E;2 $$ -subcritical, L 2 $$ {L}&amp;amp;#x0005E;2 $$ -critical and L 2 $$ {L}&amp;amp;#x0005E;2 $$ -supercritical perturbation μ | u | q 2 u $$ \mu {\left&amp;amp;#x0007C;u\right&amp;amp;#x0007C;}&amp;amp;#x0005E;{q-2}u $$ , respectively, we obtain several existence results. By limiting the range of μ $$ \mu $$ , for q ( q , 2 s ] $$ q\in \left(\overline{q},{2}_s&amp;amp;#x0005E;{\ast}\right] $$ , we prove that there exists a positive ground state normalized solution for the above problem with a > 0 $$ a&amp;gt;0 $$ . Furthermore, for q ( 2 , q ) $$ q\in \left(2,\overline{q}\right) $$ , we prove that there exists a 0 > 0 $$ {a}_0&amp;gt;0 $$ such that the normalized solution with negative energy to the above problem can be obtained when a ( 0 , a 0 ) $$ a\in \left(0,{a}_0\right) $$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信