{"title":"相位匹配测量的卫星通信——与设备无关的量子密钥分配","authors":"Arindam Dutta, Subhashish Banerjee, Anirban Pathak","doi":"10.1002/andp.202500134","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the feasibility of the phase-matching measurement-device-independent quantum key distribution (PM-MDI QKD) protocol proposed by Lin and Lütkenhaus for satellite-based quantum communication. The protocol's key rate, known to exceed the repeaterless PLOB bound, is evaluated in the asymptotic limit under noisy conditions typical of satellite communications, including loss-only scenarios. The setup involves two ground-based parties connected via fiber (loss-only or noisy) and a space-based third party linked to one of these two ground-based parties through free-space communication. Simulations using the elliptic-beam approximation model the average key rate (AKR) and its probability distribution (PDR) across varying zenith angles and fiber distances. Down-link free-space communication is assessed under day and night conditions, with intensity optimization for each graphical point. Dynamic configurations of satellite and ground stations are also considered. Results indicate that AKR decays more slowly under loss-only conditions, while PDR analysis shows higher key rates produce more concentrated distributions. These findings demonstrate the potential of PM-MDI QKD protocols for achieving reliable key rates in satellite-based quantum communication.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite-Based Communication for Phase-Matching Measurement-Device-Independent Quantum Key Distribution\",\"authors\":\"Arindam Dutta, Subhashish Banerjee, Anirban Pathak\",\"doi\":\"10.1002/andp.202500134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the feasibility of the phase-matching measurement-device-independent quantum key distribution (PM-MDI QKD) protocol proposed by Lin and Lütkenhaus for satellite-based quantum communication. The protocol's key rate, known to exceed the repeaterless PLOB bound, is evaluated in the asymptotic limit under noisy conditions typical of satellite communications, including loss-only scenarios. The setup involves two ground-based parties connected via fiber (loss-only or noisy) and a space-based third party linked to one of these two ground-based parties through free-space communication. Simulations using the elliptic-beam approximation model the average key rate (AKR) and its probability distribution (PDR) across varying zenith angles and fiber distances. Down-link free-space communication is assessed under day and night conditions, with intensity optimization for each graphical point. Dynamic configurations of satellite and ground stations are also considered. Results indicate that AKR decays more slowly under loss-only conditions, while PDR analysis shows higher key rates produce more concentrated distributions. These findings demonstrate the potential of PM-MDI QKD protocols for achieving reliable key rates in satellite-based quantum communication.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202500134\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202500134","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Satellite-Based Communication for Phase-Matching Measurement-Device-Independent Quantum Key Distribution
This study investigates the feasibility of the phase-matching measurement-device-independent quantum key distribution (PM-MDI QKD) protocol proposed by Lin and Lütkenhaus for satellite-based quantum communication. The protocol's key rate, known to exceed the repeaterless PLOB bound, is evaluated in the asymptotic limit under noisy conditions typical of satellite communications, including loss-only scenarios. The setup involves two ground-based parties connected via fiber (loss-only or noisy) and a space-based third party linked to one of these two ground-based parties through free-space communication. Simulations using the elliptic-beam approximation model the average key rate (AKR) and its probability distribution (PDR) across varying zenith angles and fiber distances. Down-link free-space communication is assessed under day and night conditions, with intensity optimization for each graphical point. Dynamic configurations of satellite and ground stations are also considered. Results indicate that AKR decays more slowly under loss-only conditions, while PDR analysis shows higher key rates produce more concentrated distributions. These findings demonstrate the potential of PM-MDI QKD protocols for achieving reliable key rates in satellite-based quantum communication.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.