非局部扩散方程的BV解及其在乘性消噪中的应用

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Yi Ran, Zhichang Guo, Jingfeng Shao, Yao Li, Boying Wu
{"title":"非局部扩散方程的BV解及其在乘性消噪中的应用","authors":"Yi Ran,&nbsp;Zhichang Guo,&nbsp;Jingfeng Shao,&nbsp;Yao Li,&nbsp;Boying Wu","doi":"10.1002/mma.11184","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multiplicative Gamma denoising is always a critical challenge in image processing. The multiplicative mechanism and the heavy-tailed distribution of the Gamma noise significantly complicate its removal. To address these two characteristics, this paper proposes a novel gray value indicator function, which is inserted into a new nonlocal diffusion equation model that combines the strengths of the Perona–Malik model and the regularized Perona–Malik model. Furthermore, the concept of generalized Young measure is used to prove the existence for BV solutions and the maximum principle of the proposed model when the initial value \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>∈</mo>\n <mi>B</mi>\n <mi>V</mi>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n <mo>∩</mo>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {u}_0\\in BV\\left(\\Omega \\right)\\cap {L}&amp;amp;amp;#x0005E;{\\infty}\\left(\\Omega \\right) $$</annotation>\n </semantics></math>. We employ the explicit finite difference method to implement our model, and comparative experiments are conducted.</p>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 15","pages":"14367-14384"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BV Solution for a Nonlocal Diffusion Equation and Its Application on Multiplicative Noise Removal\",\"authors\":\"Yi Ran,&nbsp;Zhichang Guo,&nbsp;Jingfeng Shao,&nbsp;Yao Li,&nbsp;Boying Wu\",\"doi\":\"10.1002/mma.11184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Multiplicative Gamma denoising is always a critical challenge in image processing. The multiplicative mechanism and the heavy-tailed distribution of the Gamma noise significantly complicate its removal. To address these two characteristics, this paper proposes a novel gray value indicator function, which is inserted into a new nonlocal diffusion equation model that combines the strengths of the Perona–Malik model and the regularized Perona–Malik model. Furthermore, the concept of generalized Young measure is used to prove the existence for BV solutions and the maximum principle of the proposed model when the initial value \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <mrow>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>∈</mo>\\n <mi>B</mi>\\n <mi>V</mi>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n <mo>∩</mo>\\n <msup>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msup>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {u}_0\\\\in BV\\\\left(\\\\Omega \\\\right)\\\\cap {L}&amp;amp;amp;#x0005E;{\\\\infty}\\\\left(\\\\Omega \\\\right) $$</annotation>\\n </semantics></math>. We employ the explicit finite difference method to implement our model, and comparative experiments are conducted.</p>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 15\",\"pages\":\"14367-14384\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.11184\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.11184","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

乘法伽玛去噪一直是图像处理中的一个关键问题。伽马噪声的倍增机制和重尾分布使其去除变得非常复杂。针对这两个特点,本文提出了一种新的灰色值指示函数,该函数被插入到一个新的非局部扩散方程模型中,该模型结合了Perona-Malik模型和正则化Perona-Malik模型的优点。此外,利用广义杨测度的概念证明了当初值u 0∈BV (Ω)∩时BV解的存在性和所提模型的极大原理L∞(Ω) $$ {u}_0\in BV\left(\Omega \right)\cap {L}&amp;amp;#x0005E;{\infty}\left(\Omega \right) $$。我们采用显式有限差分法来实现我们的模型,并进行了对比实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The BV Solution for a Nonlocal Diffusion Equation and Its Application on Multiplicative Noise Removal

Multiplicative Gamma denoising is always a critical challenge in image processing. The multiplicative mechanism and the heavy-tailed distribution of the Gamma noise significantly complicate its removal. To address these two characteristics, this paper proposes a novel gray value indicator function, which is inserted into a new nonlocal diffusion equation model that combines the strengths of the Perona–Malik model and the regularized Perona–Malik model. Furthermore, the concept of generalized Young measure is used to prove the existence for BV solutions and the maximum principle of the proposed model when the initial value u 0 B V ( Ω ) L ( Ω ) $$ {u}_0\in BV\left(\Omega \right)\cap {L}&amp;amp;#x0005E;{\infty}\left(\Omega \right) $$ . We employ the explicit finite difference method to implement our model, and comparative experiments are conducted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信