无线配电网自恢复中ECU配置的llm增强粒子群算法

IF 0.5 Q4 TELECOMMUNICATIONS
Hongtao Mao, Yifeng Wang, Bin Dong, Yangyang Miao, Wu Ma, Jun Wang
{"title":"无线配电网自恢复中ECU配置的llm增强粒子群算法","authors":"Hongtao Mao,&nbsp;Yifeng Wang,&nbsp;Bin Dong,&nbsp;Yangyang Miao,&nbsp;Wu Ma,&nbsp;Jun Wang","doi":"10.1002/itl2.70135","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Rapid fault self-restoration in complex power distribution networks is crucial. Edge Computing Units (ECUs) offer decentralized control, but their optimal configuration is challenging. This paper proposes a Large Language Model (LLM) enhanced Particle Swarm Optimization (PSO) framework for ECU configuration, explicitly considering advanced wireless communication (e.g., 5G/6G, LoRa) characteristics. The LLM aids in intelligent population initialization and adaptive particle guidance within PSO. This approach aims to optimize ECU placement and inter-ECU data exchange. Simulations on IEEE test systems show that the LLM-enhanced PSO significantly improves ECU configurations, reduces communication delays, and enhances self-restoration performance, thereby bolstering smart grid resilience.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLM-Enhanced PSO for ECU Configuration in Wireless-Supported Distribution Network Self-Restoration\",\"authors\":\"Hongtao Mao,&nbsp;Yifeng Wang,&nbsp;Bin Dong,&nbsp;Yangyang Miao,&nbsp;Wu Ma,&nbsp;Jun Wang\",\"doi\":\"10.1002/itl2.70135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Rapid fault self-restoration in complex power distribution networks is crucial. Edge Computing Units (ECUs) offer decentralized control, but their optimal configuration is challenging. This paper proposes a Large Language Model (LLM) enhanced Particle Swarm Optimization (PSO) framework for ECU configuration, explicitly considering advanced wireless communication (e.g., 5G/6G, LoRa) characteristics. The LLM aids in intelligent population initialization and adaptive particle guidance within PSO. This approach aims to optimize ECU placement and inter-ECU data exchange. Simulations on IEEE test systems show that the LLM-enhanced PSO significantly improves ECU configurations, reduces communication delays, and enhances self-restoration performance, thereby bolstering smart grid resilience.</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在复杂配电网中,快速故障自恢复至关重要。边缘计算单元(ecu)提供分散控制,但其最佳配置具有挑战性。本文提出了一种用于ECU配置的大语言模型(LLM)增强粒子群优化(PSO)框架,明确考虑了先进的无线通信(例如5G/6G, LoRa)特性。该算法有助于粒子群的智能种群初始化和自适应粒子引导。这种方法旨在优化ECU的位置和ECU间的数据交换。在IEEE测试系统上的仿真表明,llm增强的PSO显著改善了ECU配置,减少了通信延迟,增强了自恢复性能,从而增强了智能电网的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LLM-Enhanced PSO for ECU Configuration in Wireless-Supported Distribution Network Self-Restoration

Rapid fault self-restoration in complex power distribution networks is crucial. Edge Computing Units (ECUs) offer decentralized control, but their optimal configuration is challenging. This paper proposes a Large Language Model (LLM) enhanced Particle Swarm Optimization (PSO) framework for ECU configuration, explicitly considering advanced wireless communication (e.g., 5G/6G, LoRa) characteristics. The LLM aids in intelligent population initialization and adaptive particle guidance within PSO. This approach aims to optimize ECU placement and inter-ECU data exchange. Simulations on IEEE test systems show that the LLM-enhanced PSO significantly improves ECU configurations, reduces communication delays, and enhances self-restoration performance, thereby bolstering smart grid resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信