混合量子经典卷积神经网络在电能质量扰动检测与识别中的应用

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY
Yue Li, Xinhao Li, Haopeng Jia, Anjiang Liu, Qingle Wang, Shuqing Hao, Hao Liu
{"title":"混合量子经典卷积神经网络在电能质量扰动检测与识别中的应用","authors":"Yue Li,&nbsp;Xinhao Li,&nbsp;Haopeng Jia,&nbsp;Anjiang Liu,&nbsp;Qingle Wang,&nbsp;Shuqing Hao,&nbsp;Hao Liu","doi":"10.1049/qtc2.70013","DOIUrl":null,"url":null,"abstract":"<p>Power quality disturbances (PQDs) pose significant challenges to modern power systems, necessitating precise detection and identification to mitigate their impacts and enhance grid robustness. In this paper, we propose a hybrid quantum-classical convolutional neural network model (PQDs-QC-CNN) for detecting and identifying power quality disturbances with high efficiency. The model employs a hierarchical framework consisting of quantum convolutional layers, fully connected layers and softmax regression, which can effectively extract multiscale features from disturbance data while mitigating overfitting. Utilising <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation> $N$</annotation>\n </semantics></math> quantum bits, the model achieves a time complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mtext>poly</mtext>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O(\\text{poly}(N))$</annotation>\n </semantics></math> and a space complexity of <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $O(N)$</annotation>\n </semantics></math>, ensuring scalability and efficiency. By conducting experiments on the datasets generated in compliance with IEEE Std 1159–2019, the results show a 100% detection accuracy and 99.56% identification accuracy, even with minimal quantum bits and simple configurations. Additionally, the model demonstrates robust noise resistance, maintaining approximately 98% identification accuracy across various noise scenarios. PQDs-QC-CNN not only shows promise for power system applications but also explores new avenues for quantum algorithm integration in smart grid technologies.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70013","citationCount":"0","resultStr":"{\"title\":\"Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance\",\"authors\":\"Yue Li,&nbsp;Xinhao Li,&nbsp;Haopeng Jia,&nbsp;Anjiang Liu,&nbsp;Qingle Wang,&nbsp;Shuqing Hao,&nbsp;Hao Liu\",\"doi\":\"10.1049/qtc2.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power quality disturbances (PQDs) pose significant challenges to modern power systems, necessitating precise detection and identification to mitigate their impacts and enhance grid robustness. In this paper, we propose a hybrid quantum-classical convolutional neural network model (PQDs-QC-CNN) for detecting and identifying power quality disturbances with high efficiency. The model employs a hierarchical framework consisting of quantum convolutional layers, fully connected layers and softmax regression, which can effectively extract multiscale features from disturbance data while mitigating overfitting. Utilising <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation> $N$</annotation>\\n </semantics></math> quantum bits, the model achieves a time complexity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mtext>poly</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O(\\\\text{poly}(N))$</annotation>\\n </semantics></math> and a space complexity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $O(N)$</annotation>\\n </semantics></math>, ensuring scalability and efficiency. By conducting experiments on the datasets generated in compliance with IEEE Std 1159–2019, the results show a 100% detection accuracy and 99.56% identification accuracy, even with minimal quantum bits and simple configurations. Additionally, the model demonstrates robust noise resistance, maintaining approximately 98% identification accuracy across various noise scenarios. PQDs-QC-CNN not only shows promise for power system applications but also explores new avenues for quantum algorithm integration in smart grid technologies.</p>\",\"PeriodicalId\":100651,\"journal\":{\"name\":\"IET Quantum Communication\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Quantum Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"QUANTUM SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电能质量扰动(PQDs)对现代电力系统构成了重大挑战,需要精确的检测和识别来减轻其影响并增强电网的鲁棒性。本文提出了一种混合量子-经典卷积神经网络模型(PQDs-QC-CNN),用于高效检测和识别电能质量干扰。该模型采用由量子卷积层、全连接层和softmax回归组成的分层框架,可以有效地从干扰数据中提取多尺度特征,同时减少过拟合。利用N$ N$量子比特,该模型的时间复杂度为O(poly (N))$ O(\text{poly}(N))$和一个空格复杂度为O(N)$ O(N)$,保证了可扩展性和效率。通过对符合IEEE标准1159-2019的数据集进行实验,即使在最小量子位和简单配置的情况下,检测准确率也达到100%,识别准确率达到99.56%。此外,该模型具有强大的抗噪声能力,在各种噪声情况下保持约98%的识别准确率。PQDs-QC-CNN不仅显示了电力系统应用的前景,而且为量子算法在智能电网技术中的集成探索了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance

Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance

Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance

Hybrid Quantum-Classical Convolutional Neural Network for Detection and Identification of Power Quality Disturbance

Power quality disturbances (PQDs) pose significant challenges to modern power systems, necessitating precise detection and identification to mitigate their impacts and enhance grid robustness. In this paper, we propose a hybrid quantum-classical convolutional neural network model (PQDs-QC-CNN) for detecting and identifying power quality disturbances with high efficiency. The model employs a hierarchical framework consisting of quantum convolutional layers, fully connected layers and softmax regression, which can effectively extract multiscale features from disturbance data while mitigating overfitting. Utilising N $N$ quantum bits, the model achieves a time complexity of O ( poly ( N ) ) $O(\text{poly}(N))$ and a space complexity of O ( N ) $O(N)$ , ensuring scalability and efficiency. By conducting experiments on the datasets generated in compliance with IEEE Std 1159–2019, the results show a 100% detection accuracy and 99.56% identification accuracy, even with minimal quantum bits and simple configurations. Additionally, the model demonstrates robust noise resistance, maintaining approximately 98% identification accuracy across various noise scenarios. PQDs-QC-CNN not only shows promise for power system applications but also explores new avenues for quantum algorithm integration in smart grid technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信