基于纺织的可调压力阈值机械受体阵列用于医疗监测中的多维检测

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kitming Ma, Linlin Ma, Chengyu Li, Renbo Zhu, Jing Yang, Su Liu, Xiaoming Tao
{"title":"基于纺织的可调压力阈值机械受体阵列用于医疗监测中的多维检测","authors":"Kitming Ma,&nbsp;Linlin Ma,&nbsp;Chengyu Li,&nbsp;Renbo Zhu,&nbsp;Jing Yang,&nbsp;Su Liu,&nbsp;Xiaoming Tao","doi":"10.1007/s42765-025-00572-3","DOIUrl":null,"url":null,"abstract":"<div><p>Mimicking human skin mechanoreceptors grouped by various thresholds creates an efficient system to detect interfacial stress between skin and environment, enabling precise human perception. Specifically, the detected signals are transmitted in the form of spikes in the neuronal network via synapses. However, current efforts replicating this mechanism for health-monitoring struggle with limitations in flexibility, durability, and performance, particularly in terms of low sensitivity and narrow detection range. This study develops novel soft mechanoreceptors with tunable pressure thresholds from 1.94 kPa to 15 MPa. The 0.455-mm-thin mechanoreceptor achieves an impressive on–off ratio of over eight orders of magnitude, up to 40,000 repeated compression cycles and after 20 wash cycles. In addition, the helical array reduces the complexity and port count, requiring only two output channels, and a differential simplification algorithm enables two-dimensional spatial mapping of pressure. This array shows stable performance across temperatures ranging from − 40 to 50 °C and underwater at depths of 1 m. This technology shows significant potential for wearable healthcare applications, including sensor stimulation for children and the elderly, and fall detection for Parkinson’s patients, thereby enhancing the functionality and reliability of wearable monitoring systems.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1590 - 1604"},"PeriodicalIF":21.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42765-025-00572-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Textile-Based Mechanoreceptor Array with Tunable Pressure Thresholds for Mutli-dimensional Detection in Healthcare Monitoring\",\"authors\":\"Kitming Ma,&nbsp;Linlin Ma,&nbsp;Chengyu Li,&nbsp;Renbo Zhu,&nbsp;Jing Yang,&nbsp;Su Liu,&nbsp;Xiaoming Tao\",\"doi\":\"10.1007/s42765-025-00572-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mimicking human skin mechanoreceptors grouped by various thresholds creates an efficient system to detect interfacial stress between skin and environment, enabling precise human perception. Specifically, the detected signals are transmitted in the form of spikes in the neuronal network via synapses. However, current efforts replicating this mechanism for health-monitoring struggle with limitations in flexibility, durability, and performance, particularly in terms of low sensitivity and narrow detection range. This study develops novel soft mechanoreceptors with tunable pressure thresholds from 1.94 kPa to 15 MPa. The 0.455-mm-thin mechanoreceptor achieves an impressive on–off ratio of over eight orders of magnitude, up to 40,000 repeated compression cycles and after 20 wash cycles. In addition, the helical array reduces the complexity and port count, requiring only two output channels, and a differential simplification algorithm enables two-dimensional spatial mapping of pressure. This array shows stable performance across temperatures ranging from − 40 to 50 °C and underwater at depths of 1 m. This technology shows significant potential for wearable healthcare applications, including sensor stimulation for children and the elderly, and fall detection for Parkinson’s patients, thereby enhancing the functionality and reliability of wearable monitoring systems.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 5\",\"pages\":\"1590 - 1604\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42765-025-00572-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00572-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00572-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

模拟人类皮肤机械感受器按不同阈值分组,创建了一个有效的系统来检测皮肤和环境之间的界面应力,实现精确的人类感知。具体来说,检测到的信号通过突触在神经元网络中以尖峰的形式传输。然而,目前复制这种机制用于健康监测的努力在灵活性、耐用性和性能方面存在局限性,特别是在低灵敏度和窄检测范围方面。本研究开发了具有1.94 kPa至15 MPa可调压力阈值的新型软机械感受器。这种厚度为0.455毫米的机械感受器实现了令人印象深刻的开关比,超过8个数量级,高达40,000次重复压缩循环和20次洗涤循环。此外,螺旋阵列减少了复杂性和端口数量,只需要两个输出通道,并且微分简化算法可以实现压力的二维空间映射。该阵列在- 40至50°C的温度范围内以及水下深度为1米的情况下表现出稳定的性能。该技术在可穿戴医疗保健应用方面显示出巨大的潜力,包括儿童和老年人的传感器刺激,帕金森患者的跌倒检测,从而增强可穿戴监测系统的功能和可靠性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textile-Based Mechanoreceptor Array with Tunable Pressure Thresholds for Mutli-dimensional Detection in Healthcare Monitoring

Mimicking human skin mechanoreceptors grouped by various thresholds creates an efficient system to detect interfacial stress between skin and environment, enabling precise human perception. Specifically, the detected signals are transmitted in the form of spikes in the neuronal network via synapses. However, current efforts replicating this mechanism for health-monitoring struggle with limitations in flexibility, durability, and performance, particularly in terms of low sensitivity and narrow detection range. This study develops novel soft mechanoreceptors with tunable pressure thresholds from 1.94 kPa to 15 MPa. The 0.455-mm-thin mechanoreceptor achieves an impressive on–off ratio of over eight orders of magnitude, up to 40,000 repeated compression cycles and after 20 wash cycles. In addition, the helical array reduces the complexity and port count, requiring only two output channels, and a differential simplification algorithm enables two-dimensional spatial mapping of pressure. This array shows stable performance across temperatures ranging from − 40 to 50 °C and underwater at depths of 1 m. This technology shows significant potential for wearable healthcare applications, including sensor stimulation for children and the elderly, and fall detection for Parkinson’s patients, thereby enhancing the functionality and reliability of wearable monitoring systems.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信