{"title":"红细胞的力学模型:细胞水平的变构?","authors":"S. G. Gevorkian, D. S. Gevorgyan, Y. A. Dyakov","doi":"10.1134/S1990793125700514","DOIUrl":null,"url":null,"abstract":"<p>Based on the architecture and coevolution of allosteric materials, a mechanical model of the erythrocyte is proposed. This model is used to explain such phenomena as erythrocyte flickering and phase transitions (morphological changes) at 49.5°C, which are not fully explained from the physical point of view. To describe the viscoelastic properties of proteins (in particular, for hemoglobin), experimental data obtained earlier are taken. The difference in viscoelastic properties between different forms of hemoglobin obtained earlier is used to describe the forces that are necessary to turn on and off the springs in the spectrin network.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"903 - 913"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Model of Erythrocyte: Allostery at the Cellular Level?\",\"authors\":\"S. G. Gevorkian, D. S. Gevorgyan, Y. A. Dyakov\",\"doi\":\"10.1134/S1990793125700514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the architecture and coevolution of allosteric materials, a mechanical model of the erythrocyte is proposed. This model is used to explain such phenomena as erythrocyte flickering and phase transitions (morphological changes) at 49.5°C, which are not fully explained from the physical point of view. To describe the viscoelastic properties of proteins (in particular, for hemoglobin), experimental data obtained earlier are taken. The difference in viscoelastic properties between different forms of hemoglobin obtained earlier is used to describe the forces that are necessary to turn on and off the springs in the spectrin network.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":\"19 4\",\"pages\":\"903 - 913\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793125700514\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700514","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Mechanical Model of Erythrocyte: Allostery at the Cellular Level?
Based on the architecture and coevolution of allosteric materials, a mechanical model of the erythrocyte is proposed. This model is used to explain such phenomena as erythrocyte flickering and phase transitions (morphological changes) at 49.5°C, which are not fully explained from the physical point of view. To describe the viscoelastic properties of proteins (in particular, for hemoglobin), experimental data obtained earlier are taken. The difference in viscoelastic properties between different forms of hemoglobin obtained earlier is used to describe the forces that are necessary to turn on and off the springs in the spectrin network.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.