Amer T. Nawaf, Ali Saleh Jafer, Ali A. Yasser, Ali A. Hassan
{"title":"数字挡板间歇式反应器中电催化和电混凝氧化对活性蓝色废水有机去除过程的促进作用","authors":"Amer T. Nawaf, Ali Saleh Jafer, Ali A. Yasser, Ali A. Hassan","doi":"10.3103/S0361521925700296","DOIUrl":null,"url":null,"abstract":"<p>Here, the organic concentration in wastewater is reduced using a Digital Baffle Batch Reactor (DBBR) for new process electro catalytic and electro coagulation process (EC&ECP), which is based on an anatase titanium oxide (anatase-TiO<sub>2</sub>). The work deals with the treatment of simulated reactive blue wastewater (RBWW) through electro of coagulation and oxidation in a batch electro-catalytic reactor by means of aluminum and iron as anode and cathode resources correspondingly. All these data based on the results obtained from characterization such as SEM, XRD and FTIR. Belongings of operating issues for example titanium dioxide (15–45 ppm), pH (3–9), and time (10–50 min) and (5–20 ppm) concentration of reactive blue on the organic removal (OR) were deliberate. The consequences revealed that titanium dioxide concentration has the chief result on the competence of OR confirming that the hybrid was ruled through reaction circumstances in the RBWW solution. Parametric optimization was approved out by means of response surface methodology combined with Box Behnken Design toward make the most of the OR. Below enhanced working circumstances, the organic elimination was found to be 98.9%. The new reactor design (DBBR) provided the reactivity the anatase-TiO<sub>2</sub> made using new process the electro catalytic and electro coagulation (EC&ECP) and achieve a high organic removal rate, resulting in clean water. Additionally, the new reactor, material, and EC&ECP process have not all been met in a single process, and this is thought to be the first investigation in this field.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"59 5","pages":"400 - 415"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting of Organic Removal Process from Reactive Blue Wastewater by Using Electrocatalytic and Electrocoagulation Oxidation in Digital Baffle Batch Reactor\",\"authors\":\"Amer T. Nawaf, Ali Saleh Jafer, Ali A. Yasser, Ali A. Hassan\",\"doi\":\"10.3103/S0361521925700296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Here, the organic concentration in wastewater is reduced using a Digital Baffle Batch Reactor (DBBR) for new process electro catalytic and electro coagulation process (EC&ECP), which is based on an anatase titanium oxide (anatase-TiO<sub>2</sub>). The work deals with the treatment of simulated reactive blue wastewater (RBWW) through electro of coagulation and oxidation in a batch electro-catalytic reactor by means of aluminum and iron as anode and cathode resources correspondingly. All these data based on the results obtained from characterization such as SEM, XRD and FTIR. Belongings of operating issues for example titanium dioxide (15–45 ppm), pH (3–9), and time (10–50 min) and (5–20 ppm) concentration of reactive blue on the organic removal (OR) were deliberate. The consequences revealed that titanium dioxide concentration has the chief result on the competence of OR confirming that the hybrid was ruled through reaction circumstances in the RBWW solution. Parametric optimization was approved out by means of response surface methodology combined with Box Behnken Design toward make the most of the OR. Below enhanced working circumstances, the organic elimination was found to be 98.9%. The new reactor design (DBBR) provided the reactivity the anatase-TiO<sub>2</sub> made using new process the electro catalytic and electro coagulation (EC&ECP) and achieve a high organic removal rate, resulting in clean water. Additionally, the new reactor, material, and EC&ECP process have not all been met in a single process, and this is thought to be the first investigation in this field.</p>\",\"PeriodicalId\":779,\"journal\":{\"name\":\"Solid Fuel Chemistry\",\"volume\":\"59 5\",\"pages\":\"400 - 415\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Fuel Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0361521925700296\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521925700296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Boosting of Organic Removal Process from Reactive Blue Wastewater by Using Electrocatalytic and Electrocoagulation Oxidation in Digital Baffle Batch Reactor
Here, the organic concentration in wastewater is reduced using a Digital Baffle Batch Reactor (DBBR) for new process electro catalytic and electro coagulation process (EC&ECP), which is based on an anatase titanium oxide (anatase-TiO2). The work deals with the treatment of simulated reactive blue wastewater (RBWW) through electro of coagulation and oxidation in a batch electro-catalytic reactor by means of aluminum and iron as anode and cathode resources correspondingly. All these data based on the results obtained from characterization such as SEM, XRD and FTIR. Belongings of operating issues for example titanium dioxide (15–45 ppm), pH (3–9), and time (10–50 min) and (5–20 ppm) concentration of reactive blue on the organic removal (OR) were deliberate. The consequences revealed that titanium dioxide concentration has the chief result on the competence of OR confirming that the hybrid was ruled through reaction circumstances in the RBWW solution. Parametric optimization was approved out by means of response surface methodology combined with Box Behnken Design toward make the most of the OR. Below enhanced working circumstances, the organic elimination was found to be 98.9%. The new reactor design (DBBR) provided the reactivity the anatase-TiO2 made using new process the electro catalytic and electro coagulation (EC&ECP) and achieve a high organic removal rate, resulting in clean water. Additionally, the new reactor, material, and EC&ECP process have not all been met in a single process, and this is thought to be the first investigation in this field.
期刊介绍:
The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.