{"title":"石化行业高温高压伽马测量新技术的应用","authors":"S. Z. Islami rad, R. Gholipour Peyvandi","doi":"10.1134/S1061830925603435","DOIUrl":null,"url":null,"abstract":"<p>The ability to precisely determine the level and height of liquids in industrial reactors and vessels that operate at high pressure and temperature plays a crucial role in the petrochemical, oil, and steel industries. Since the exact measurement of fluid or liquid levels is impossible due to high pressures and temperatures in vessels, a technique has been presented to calibrate gamma level gauges. To achieve this aim, the nuclear level gauge of a petrochemical stripper was simulated using Monte Carlo N-Particle eXtended (MCNPX) in real and operational conditions in the oil district in two stages. First, the nuclear level gauge consisting of a source, detector, and vessel (stripper), including water and air for calibration, was simulated with different height percentages. The results were compared, analyzed, and validated with experimental data in operational conditions. According to the results, the mean relative error (MRE%) was less than 6.71% and the root mean square error (RMSE) was predicted to be 0.01. The results showed that the acquired data from the simulation are in good agreement with real data (experimental). Then, the level gauge and stripper containing urea and gases at high temperature and pressure, and with similar height percentages in the first stage, were simulated. The results, which are completely consistent with the experimental findings, were converted into the required format and input into the nuclear electronic system for final calibration.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"61 6","pages":"715 - 723"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gamma Level Gauging at High Temperature and Pressure Using a New Calibration Technique in the Petrochemical Industry\",\"authors\":\"S. Z. Islami rad, R. Gholipour Peyvandi\",\"doi\":\"10.1134/S1061830925603435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to precisely determine the level and height of liquids in industrial reactors and vessels that operate at high pressure and temperature plays a crucial role in the petrochemical, oil, and steel industries. Since the exact measurement of fluid or liquid levels is impossible due to high pressures and temperatures in vessels, a technique has been presented to calibrate gamma level gauges. To achieve this aim, the nuclear level gauge of a petrochemical stripper was simulated using Monte Carlo N-Particle eXtended (MCNPX) in real and operational conditions in the oil district in two stages. First, the nuclear level gauge consisting of a source, detector, and vessel (stripper), including water and air for calibration, was simulated with different height percentages. The results were compared, analyzed, and validated with experimental data in operational conditions. According to the results, the mean relative error (MRE%) was less than 6.71% and the root mean square error (RMSE) was predicted to be 0.01. The results showed that the acquired data from the simulation are in good agreement with real data (experimental). Then, the level gauge and stripper containing urea and gases at high temperature and pressure, and with similar height percentages in the first stage, were simulated. The results, which are completely consistent with the experimental findings, were converted into the required format and input into the nuclear electronic system for final calibration.</p>\",\"PeriodicalId\":764,\"journal\":{\"name\":\"Russian Journal of Nondestructive Testing\",\"volume\":\"61 6\",\"pages\":\"715 - 723\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Nondestructive Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061830925603435\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830925603435","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
The Gamma Level Gauging at High Temperature and Pressure Using a New Calibration Technique in the Petrochemical Industry
The ability to precisely determine the level and height of liquids in industrial reactors and vessels that operate at high pressure and temperature plays a crucial role in the petrochemical, oil, and steel industries. Since the exact measurement of fluid or liquid levels is impossible due to high pressures and temperatures in vessels, a technique has been presented to calibrate gamma level gauges. To achieve this aim, the nuclear level gauge of a petrochemical stripper was simulated using Monte Carlo N-Particle eXtended (MCNPX) in real and operational conditions in the oil district in two stages. First, the nuclear level gauge consisting of a source, detector, and vessel (stripper), including water and air for calibration, was simulated with different height percentages. The results were compared, analyzed, and validated with experimental data in operational conditions. According to the results, the mean relative error (MRE%) was less than 6.71% and the root mean square error (RMSE) was predicted to be 0.01. The results showed that the acquired data from the simulation are in good agreement with real data (experimental). Then, the level gauge and stripper containing urea and gases at high temperature and pressure, and with similar height percentages in the first stage, were simulated. The results, which are completely consistent with the experimental findings, were converted into the required format and input into the nuclear electronic system for final calibration.
期刊介绍:
Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).