Abelian \(p\) -具有固定初等子群或固定初等商的群

IF 0.5 4区 数学 Q3 MATHEMATICS
Justyna Kosakowska, Markus Schmidmeier, Martin Schreiner
{"title":"Abelian \\(p\\) -具有固定初等子群或固定初等商的群","authors":"Justyna Kosakowska,&nbsp;Markus Schmidmeier,&nbsp;Martin Schreiner","doi":"10.1007/s00013-025-02150-w","DOIUrl":null,"url":null,"abstract":"<div><p>In his 1934 paper, G. Birkhoff poses the problem of classifying pairs (<i>G</i>, <i>U</i>) where <i>G</i> is an abelian group and <span>\\(U\\subset G\\)</span> a subgroup, up to automorphisms of <i>G</i>. In general, Birkhoff’s problem is not considered feasible. In this note, we fix a prime number <i>p</i> and assume that <i>G</i> is a direct sum of cyclic <i>p</i>-groups and <span>\\(U\\subset G\\)</span> is a subgroup. Under the assumption that the factor group <i>G</i>/<i>U</i> is an elementary abelian <i>p</i>-group, we show that the pair (<i>G</i>, <i>U</i>) always has a direct sum decomposition into pairs of type <span>\\(({\\mathbb {Z}}/(p^n),{\\mathbb {Z}}/(p^n))\\)</span> or <span>\\((\\mathbb {Z}/(p^n), (p))\\)</span>. Surprisingly, in the dual situation, we need an additional condition. If we assume that <i>U</i> itself is an elementary subgroup of <i>G</i>, then we show that the pair (<i>G</i>, <i>U</i>) has a direct sum decomposition into pairs of type <span>\\(({\\mathbb {Z}}/(p^n),0)\\)</span> or <span>\\((\\mathbb {Z}/(p^n), (p^{n-1}))\\)</span> if and only if <i>G</i>/<i>U</i> is a direct sum of cyclic <i>p</i>-groups. We generalize the above results to modules over commutative discrete valuation rings.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 3","pages":"235 - 246"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02150-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Abelian \\\\(p\\\\)-groups with a fixed elementary subgroup or with a fixed elementary quotient\",\"authors\":\"Justyna Kosakowska,&nbsp;Markus Schmidmeier,&nbsp;Martin Schreiner\",\"doi\":\"10.1007/s00013-025-02150-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In his 1934 paper, G. Birkhoff poses the problem of classifying pairs (<i>G</i>, <i>U</i>) where <i>G</i> is an abelian group and <span>\\\\(U\\\\subset G\\\\)</span> a subgroup, up to automorphisms of <i>G</i>. In general, Birkhoff’s problem is not considered feasible. In this note, we fix a prime number <i>p</i> and assume that <i>G</i> is a direct sum of cyclic <i>p</i>-groups and <span>\\\\(U\\\\subset G\\\\)</span> is a subgroup. Under the assumption that the factor group <i>G</i>/<i>U</i> is an elementary abelian <i>p</i>-group, we show that the pair (<i>G</i>, <i>U</i>) always has a direct sum decomposition into pairs of type <span>\\\\(({\\\\mathbb {Z}}/(p^n),{\\\\mathbb {Z}}/(p^n))\\\\)</span> or <span>\\\\((\\\\mathbb {Z}/(p^n), (p))\\\\)</span>. Surprisingly, in the dual situation, we need an additional condition. If we assume that <i>U</i> itself is an elementary subgroup of <i>G</i>, then we show that the pair (<i>G</i>, <i>U</i>) has a direct sum decomposition into pairs of type <span>\\\\(({\\\\mathbb {Z}}/(p^n),0)\\\\)</span> or <span>\\\\((\\\\mathbb {Z}/(p^n), (p^{n-1}))\\\\)</span> if and only if <i>G</i>/<i>U</i> is a direct sum of cyclic <i>p</i>-groups. We generalize the above results to modules over commutative discrete valuation rings.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 3\",\"pages\":\"235 - 246\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02150-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02150-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02150-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在他1934年的论文中,G. Birkhoff提出了对(G, U)的分类问题,其中G是一个阿贝尔群,\(U\subset G\)是一个子群,直到G的自同构。一般来说,Birkhoff的问题是不可行的。在这篇文章中,我们固定一个素数p,并假设G是循环p群的直接和,\(U\subset G\)是一个子群。在假设因子群G/U是初等阿贝尔p群的情况下,我们证明了对(G, U)总是直接和分解为\(({\mathbb {Z}}/(p^n),{\mathbb {Z}}/(p^n))\)或\((\mathbb {Z}/(p^n), (p))\)类型的对。令人惊讶的是,在双重情况下,我们需要一个额外的条件。如果我们假设U本身是G的初等子群,那么我们证明了当且仅当G/U是循环p群的直接和时,对(G, U)有一个直接和分解为\(({\mathbb {Z}}/(p^n),0)\)或\((\mathbb {Z}/(p^n), (p^{n-1}))\)类型的对。我们将上述结果推广到可交换离散估值环上的模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abelian \(p\)-groups with a fixed elementary subgroup or with a fixed elementary quotient

In his 1934 paper, G. Birkhoff poses the problem of classifying pairs (GU) where G is an abelian group and \(U\subset G\) a subgroup, up to automorphisms of G. In general, Birkhoff’s problem is not considered feasible. In this note, we fix a prime number p and assume that G is a direct sum of cyclic p-groups and \(U\subset G\) is a subgroup. Under the assumption that the factor group G/U is an elementary abelian p-group, we show that the pair (GU) always has a direct sum decomposition into pairs of type \(({\mathbb {Z}}/(p^n),{\mathbb {Z}}/(p^n))\) or \((\mathbb {Z}/(p^n), (p))\). Surprisingly, in the dual situation, we need an additional condition. If we assume that U itself is an elementary subgroup of G, then we show that the pair (GU) has a direct sum decomposition into pairs of type \(({\mathbb {Z}}/(p^n),0)\) or \((\mathbb {Z}/(p^n), (p^{n-1}))\) if and only if G/U is a direct sum of cyclic p-groups. We generalize the above results to modules over commutative discrete valuation rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信