{"title":"外电场对三角电极电渗透驱动微混合器性能的影响:设计与仿真","authors":"Elnaz Poorreza","doi":"10.1134/S1990793125700642","DOIUrl":null,"url":null,"abstract":"<p>An electroosmosis micromixer is an essential element within microfluidic systems, designed to effectively facilitate the mixing of fluids at the microscale. These devices are essential across various scientific disciplines, such as chemistry, biology, and medicine, due to their ability to manipulate minute volumes with extraordinary precision and minimal reagent loss. Electroosmosis can be defined as the movement of fluids through micro/nano-channels, driven by an externally applied electric field. In the current investigation, a micromixer that is driven by electroosmosis phenomena, has been developed to combine two disparate fluids, which are introduced into the system through separate inlets, resulting in a combined microchannel. To improve this mixing system, a sinusoidal electric potential is systematically applied across the triangular-shaped electrodes, characterized by a peak value of 0.1 V and an operational frequency of 8 Hz. The simulation results obtained from this configuration indicate that the micromixer demonstrates an exceptional mixing efficiency approaching a value of 0.96, thereby highlighting its considerable potential for beneficial applications across a diverse array of fields, particularly within microfluidics, biochemistry, and biomedical sciences.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":"19 4","pages":"1003 - 1010"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of an External Electric Field on the Performance of an Electroosmotically-Driven Micromixer with Triangular-Shaped Electrodes: Design and Simulation\",\"authors\":\"Elnaz Poorreza\",\"doi\":\"10.1134/S1990793125700642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An electroosmosis micromixer is an essential element within microfluidic systems, designed to effectively facilitate the mixing of fluids at the microscale. These devices are essential across various scientific disciplines, such as chemistry, biology, and medicine, due to their ability to manipulate minute volumes with extraordinary precision and minimal reagent loss. Electroosmosis can be defined as the movement of fluids through micro/nano-channels, driven by an externally applied electric field. In the current investigation, a micromixer that is driven by electroosmosis phenomena, has been developed to combine two disparate fluids, which are introduced into the system through separate inlets, resulting in a combined microchannel. To improve this mixing system, a sinusoidal electric potential is systematically applied across the triangular-shaped electrodes, characterized by a peak value of 0.1 V and an operational frequency of 8 Hz. The simulation results obtained from this configuration indicate that the micromixer demonstrates an exceptional mixing efficiency approaching a value of 0.96, thereby highlighting its considerable potential for beneficial applications across a diverse array of fields, particularly within microfluidics, biochemistry, and biomedical sciences.</p>\",\"PeriodicalId\":768,\"journal\":{\"name\":\"Russian Journal of Physical Chemistry B\",\"volume\":\"19 4\",\"pages\":\"1003 - 1010\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Physical Chemistry B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990793125700642\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793125700642","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
Effect of an External Electric Field on the Performance of an Electroosmotically-Driven Micromixer with Triangular-Shaped Electrodes: Design and Simulation
An electroosmosis micromixer is an essential element within microfluidic systems, designed to effectively facilitate the mixing of fluids at the microscale. These devices are essential across various scientific disciplines, such as chemistry, biology, and medicine, due to their ability to manipulate minute volumes with extraordinary precision and minimal reagent loss. Electroosmosis can be defined as the movement of fluids through micro/nano-channels, driven by an externally applied electric field. In the current investigation, a micromixer that is driven by electroosmosis phenomena, has been developed to combine two disparate fluids, which are introduced into the system through separate inlets, resulting in a combined microchannel. To improve this mixing system, a sinusoidal electric potential is systematically applied across the triangular-shaped electrodes, characterized by a peak value of 0.1 V and an operational frequency of 8 Hz. The simulation results obtained from this configuration indicate that the micromixer demonstrates an exceptional mixing efficiency approaching a value of 0.96, thereby highlighting its considerable potential for beneficial applications across a diverse array of fields, particularly within microfluidics, biochemistry, and biomedical sciences.
期刊介绍:
Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.