有限可溶群交点数的上界

IF 0.5 4区 数学 Q3 MATHEMATICS
A. Ballester-Bolinches, R. V. Borodich, S. F. Kamornikov
{"title":"有限可溶群交点数的上界","authors":"A. Ballester-Bolinches,&nbsp;R. V. Borodich,&nbsp;S. F. Kamornikov","doi":"10.1007/s00013-025-02155-5","DOIUrl":null,"url":null,"abstract":"<div><p>For a finite group <i>G</i>,  the <i>intersection number</i> <span>\\(\\alpha (G)\\)</span> of <i>G</i> is the minimal number of maximal subgroups of <i>G</i> whose intersection coincides with <span>\\(\\Phi (G),\\)</span> the Frattini subgroup of <i>G</i>. In this paper, new upper bounds on <span>\\(\\alpha (G)\\)</span> are established when <i>G</i> is soluble.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"125 3","pages":"227 - 234"},"PeriodicalIF":0.5000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02155-5.pdf","citationCount":"0","resultStr":"{\"title\":\"On some upper bounds on the intersection number of a finite soluble group\",\"authors\":\"A. Ballester-Bolinches,&nbsp;R. V. Borodich,&nbsp;S. F. Kamornikov\",\"doi\":\"10.1007/s00013-025-02155-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a finite group <i>G</i>,  the <i>intersection number</i> <span>\\\\(\\\\alpha (G)\\\\)</span> of <i>G</i> is the minimal number of maximal subgroups of <i>G</i> whose intersection coincides with <span>\\\\(\\\\Phi (G),\\\\)</span> the Frattini subgroup of <i>G</i>. In this paper, new upper bounds on <span>\\\\(\\\\alpha (G)\\\\)</span> are established when <i>G</i> is soluble.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"125 3\",\"pages\":\"227 - 234\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02155-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02155-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02155-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于有限群G, G的交点数\(\alpha (G)\)是G的最大子群与G的Frattini子群相交\(\Phi (G),\)的最小数目。本文在G可解时,建立了\(\alpha (G)\)上的新上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some upper bounds on the intersection number of a finite soluble group

For a finite group G,  the intersection number \(\alpha (G)\) of G is the minimal number of maximal subgroups of G whose intersection coincides with \(\Phi (G),\) the Frattini subgroup of G. In this paper, new upper bounds on \(\alpha (G)\) are established when G is soluble.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信