Xiaochen Lu, Pengfei Lin, Yanglei Huang, Xinping He, Chunhai Yi, Jiawei Sun, Muhammad Usman Farid, Alicia Kyoungjin An, Jiaxin Guo
{"title":"电纺纳米纤维气凝胶的研究进展:开拓性方法、多用途应用和未来展望","authors":"Xiaochen Lu, Pengfei Lin, Yanglei Huang, Xinping He, Chunhai Yi, Jiawei Sun, Muhammad Usman Farid, Alicia Kyoungjin An, Jiaxin Guo","doi":"10.1007/s42765-025-00552-7","DOIUrl":null,"url":null,"abstract":"<div><p>As an emerging nanomaterial, nanofibrous aerogel possesses advantages such as low density, large specific surface area, low thermal conductivity, and high mechanical stability. Preparing nanofiber aerogels through electrospinning is an emerging research topic. This review focuses on the key fabrication techniques for electrospun nanofibrous aerogels, including freeze-drying, direct electrospinning, layer-by-layer stacking, and thermally induced self-agglomeration. In addition, by combining nanofibers’ distinctive properties and aerogels’ physical characteristics, nanofibrous aerogels demonstrate various potential academic and industrial applications, including thermal insulation, sound absorption, solar desalination, air filtration, oil–water separation, and biomedical engineering. This paper provides an overview of the fundamentals and recent advancements in electrospinning, summarizes the fabrication methods and applications of the most representative nanofibrous aerogels in recent years, and offers insights into nanofibrous aerogels’ challenges and prospects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1350 - 1382"},"PeriodicalIF":21.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42765-025-00552-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in Electrospun Nanofibrous Aerogels: Pioneering Methods, Versatile Applications, and Future Horizons\",\"authors\":\"Xiaochen Lu, Pengfei Lin, Yanglei Huang, Xinping He, Chunhai Yi, Jiawei Sun, Muhammad Usman Farid, Alicia Kyoungjin An, Jiaxin Guo\",\"doi\":\"10.1007/s42765-025-00552-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an emerging nanomaterial, nanofibrous aerogel possesses advantages such as low density, large specific surface area, low thermal conductivity, and high mechanical stability. Preparing nanofiber aerogels through electrospinning is an emerging research topic. This review focuses on the key fabrication techniques for electrospun nanofibrous aerogels, including freeze-drying, direct electrospinning, layer-by-layer stacking, and thermally induced self-agglomeration. In addition, by combining nanofibers’ distinctive properties and aerogels’ physical characteristics, nanofibrous aerogels demonstrate various potential academic and industrial applications, including thermal insulation, sound absorption, solar desalination, air filtration, oil–water separation, and biomedical engineering. This paper provides an overview of the fundamentals and recent advancements in electrospinning, summarizes the fabrication methods and applications of the most representative nanofibrous aerogels in recent years, and offers insights into nanofibrous aerogels’ challenges and prospects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 5\",\"pages\":\"1350 - 1382\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42765-025-00552-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00552-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00552-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in Electrospun Nanofibrous Aerogels: Pioneering Methods, Versatile Applications, and Future Horizons
As an emerging nanomaterial, nanofibrous aerogel possesses advantages such as low density, large specific surface area, low thermal conductivity, and high mechanical stability. Preparing nanofiber aerogels through electrospinning is an emerging research topic. This review focuses on the key fabrication techniques for electrospun nanofibrous aerogels, including freeze-drying, direct electrospinning, layer-by-layer stacking, and thermally induced self-agglomeration. In addition, by combining nanofibers’ distinctive properties and aerogels’ physical characteristics, nanofibrous aerogels demonstrate various potential academic and industrial applications, including thermal insulation, sound absorption, solar desalination, air filtration, oil–water separation, and biomedical engineering. This paper provides an overview of the fundamentals and recent advancements in electrospinning, summarizes the fabrication methods and applications of the most representative nanofibrous aerogels in recent years, and offers insights into nanofibrous aerogels’ challenges and prospects.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.