Kusum Sharma, Nagamalleswara Rao Alluri, Asokan Poorani Sathya Prasanna, Muthukumar Perumalsamy, Anandhan Ayyappan Saj, Yeonkyeong Ryu, Ju-Hyuck Lee, Kwi-Il Park, Sang-Jae Kim
{"title":"可调相位工程聚羟基丁酸纤维垫:可穿戴应用的能量自主,温度响应平台","authors":"Kusum Sharma, Nagamalleswara Rao Alluri, Asokan Poorani Sathya Prasanna, Muthukumar Perumalsamy, Anandhan Ayyappan Saj, Yeonkyeong Ryu, Ju-Hyuck Lee, Kwi-Il Park, Sang-Jae Kim","doi":"10.1007/s42765-025-00555-4","DOIUrl":null,"url":null,"abstract":"<div><p>Biodegradable and biocompatible organic polymers play a pivotal role in designing the next generation of wearable smart electronics, reducing electronic waste and carbon emissions while promoting a toxin-free environment. Herein, an electrospun fibrous polyhydroxybutyrate (PHB) organic mat-based, energy-autonomous, skin-adaptable temperature sensor is developed, eliminating the need for additional storage or circuit components. The electrospun PHB mat exhibits an enhanced β-crystalline phase with a <i>β</i>/<i>α</i> phase ratio of 3.96 using 1,1,1,3,3,3-hexafluoro-2-propanol as a solvent. Solvent and film processing techniques were tailored to obtain high-quality PHB films with the desired thickness, flexibility, and phase conversion. The PHB mat-based temperature sensor (PHB–TS) exhibits a negative temperature coefficient of resistance, with a sensitivity of − 2.94%/°C and a thermistor constant of 4676 K, outperforming pure metals and carbon-based sensors. A triboelectric nanogenerator (TENG) based on the enhanced β-phase PHB mat was fabricated, delivering an output of 156 V, 0.43 µA, and a power density of 1.71 mW/m<sup>2</sup>. The energy-autonomous PHB–TS was attached to the index finger to monitor temperature changes upon contact with hot and cold surfaces, demonstrating good reliability and endurance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1446 - 1461"},"PeriodicalIF":21.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Phase-Engineered Polyhydroxybutyrate Fibrous Mat: An Energy Autonomous, Temperature-Responsive Platform for Wearable Application\",\"authors\":\"Kusum Sharma, Nagamalleswara Rao Alluri, Asokan Poorani Sathya Prasanna, Muthukumar Perumalsamy, Anandhan Ayyappan Saj, Yeonkyeong Ryu, Ju-Hyuck Lee, Kwi-Il Park, Sang-Jae Kim\",\"doi\":\"10.1007/s42765-025-00555-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biodegradable and biocompatible organic polymers play a pivotal role in designing the next generation of wearable smart electronics, reducing electronic waste and carbon emissions while promoting a toxin-free environment. Herein, an electrospun fibrous polyhydroxybutyrate (PHB) organic mat-based, energy-autonomous, skin-adaptable temperature sensor is developed, eliminating the need for additional storage or circuit components. The electrospun PHB mat exhibits an enhanced β-crystalline phase with a <i>β</i>/<i>α</i> phase ratio of 3.96 using 1,1,1,3,3,3-hexafluoro-2-propanol as a solvent. Solvent and film processing techniques were tailored to obtain high-quality PHB films with the desired thickness, flexibility, and phase conversion. The PHB mat-based temperature sensor (PHB–TS) exhibits a negative temperature coefficient of resistance, with a sensitivity of − 2.94%/°C and a thermistor constant of 4676 K, outperforming pure metals and carbon-based sensors. A triboelectric nanogenerator (TENG) based on the enhanced β-phase PHB mat was fabricated, delivering an output of 156 V, 0.43 µA, and a power density of 1.71 mW/m<sup>2</sup>. The energy-autonomous PHB–TS was attached to the index finger to monitor temperature changes upon contact with hot and cold surfaces, demonstrating good reliability and endurance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 5\",\"pages\":\"1446 - 1461\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00555-4\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00555-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tunable Phase-Engineered Polyhydroxybutyrate Fibrous Mat: An Energy Autonomous, Temperature-Responsive Platform for Wearable Application
Biodegradable and biocompatible organic polymers play a pivotal role in designing the next generation of wearable smart electronics, reducing electronic waste and carbon emissions while promoting a toxin-free environment. Herein, an electrospun fibrous polyhydroxybutyrate (PHB) organic mat-based, energy-autonomous, skin-adaptable temperature sensor is developed, eliminating the need for additional storage or circuit components. The electrospun PHB mat exhibits an enhanced β-crystalline phase with a β/α phase ratio of 3.96 using 1,1,1,3,3,3-hexafluoro-2-propanol as a solvent. Solvent and film processing techniques were tailored to obtain high-quality PHB films with the desired thickness, flexibility, and phase conversion. The PHB mat-based temperature sensor (PHB–TS) exhibits a negative temperature coefficient of resistance, with a sensitivity of − 2.94%/°C and a thermistor constant of 4676 K, outperforming pure metals and carbon-based sensors. A triboelectric nanogenerator (TENG) based on the enhanced β-phase PHB mat was fabricated, delivering an output of 156 V, 0.43 µA, and a power density of 1.71 mW/m2. The energy-autonomous PHB–TS was attached to the index finger to monitor temperature changes upon contact with hot and cold surfaces, demonstrating good reliability and endurance.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.