铋纳米片武装原始丝纳米纤维敷料用于多模式病原菌根除和感染伤口愈合

IF 21.3 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoxue Gu, Yaojun Yu, Suting Zhong, Meidan Zheng, Meng Zhang, Jie Wang, Zongpu Xu, Quan Wan, Subhas C. Kundu, Mingying Yang, Yajun Shuai
{"title":"铋纳米片武装原始丝纳米纤维敷料用于多模式病原菌根除和感染伤口愈合","authors":"Xiaoxue Gu,&nbsp;Yaojun Yu,&nbsp;Suting Zhong,&nbsp;Meidan Zheng,&nbsp;Meng Zhang,&nbsp;Jie Wang,&nbsp;Zongpu Xu,&nbsp;Quan Wan,&nbsp;Subhas C. Kundu,&nbsp;Mingying Yang,&nbsp;Yajun Shuai","doi":"10.1007/s42765-025-00568-z","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional antibiotic-based therapies for treating infectious wounds often face challenges in balancing long-term biosafety, promoting wound healing, and effectively eradicating bacteria. Herein, we introduce an innovative \"top-down\" approach to fabricating one-dimensional (1D) pristine silk nanofibers (SNFs) by the gradual exfoliation of silk fibers, preserving their inherent semi-crystalline structure. These SNFs functioned as a robust template for the in situ growth of two-dimensional (2D) plum blossom-like bismuth nanosheets (BiNS), whose anisotropic morphology enhances bactericidal contact efficiency. The resulting BiNS-equipped SNFs (SNF@Bi) are assembled into membranes (SNFM@Bi) via vacuum filtration, showing superior biocompatibility, photothermal efficiency, and photodynamic activity. Furthermore, the acidic wound microenvironment or near-infrared (NIR) irradiation triggered the release of Bi<sup>3</sup>⁺, exhibiting nanoenzyme-mediated catalytic activity. This multimodal mechanism allows SNFM@Bi to eliminate over 99% of <i>Staphylococcus aureus</i> and 100% of <i>Escherichia coli</i> by disrupting biofilms, inducing lysis, and causing oxidative damage. In vivo evaluations demonstrated significant bacteria clearance, accelerated angiogenesis, and enhanced collagen deposition, contributing to rapid wound healing without systemic toxicity. Notably, SNFM@Bi detaches spontaneously after healing, avoiding chronic nanomaterial retention risks. This multifunctional antimicrobial platform offers a controllable, effective, and biocompatible therapeutic strategy for antimicrobial dressing design, with potential applications in biomedicine, environmental protection, and public health.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 5","pages":"1529 - 1544"},"PeriodicalIF":21.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth-Nanosheet-Armed Pristine Silk Nanofiber Dressing for Multimodal Pathogenic Bacteria Eradication and Infected Wound Healing\",\"authors\":\"Xiaoxue Gu,&nbsp;Yaojun Yu,&nbsp;Suting Zhong,&nbsp;Meidan Zheng,&nbsp;Meng Zhang,&nbsp;Jie Wang,&nbsp;Zongpu Xu,&nbsp;Quan Wan,&nbsp;Subhas C. Kundu,&nbsp;Mingying Yang,&nbsp;Yajun Shuai\",\"doi\":\"10.1007/s42765-025-00568-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional antibiotic-based therapies for treating infectious wounds often face challenges in balancing long-term biosafety, promoting wound healing, and effectively eradicating bacteria. Herein, we introduce an innovative \\\"top-down\\\" approach to fabricating one-dimensional (1D) pristine silk nanofibers (SNFs) by the gradual exfoliation of silk fibers, preserving their inherent semi-crystalline structure. These SNFs functioned as a robust template for the in situ growth of two-dimensional (2D) plum blossom-like bismuth nanosheets (BiNS), whose anisotropic morphology enhances bactericidal contact efficiency. The resulting BiNS-equipped SNFs (SNF@Bi) are assembled into membranes (SNFM@Bi) via vacuum filtration, showing superior biocompatibility, photothermal efficiency, and photodynamic activity. Furthermore, the acidic wound microenvironment or near-infrared (NIR) irradiation triggered the release of Bi<sup>3</sup>⁺, exhibiting nanoenzyme-mediated catalytic activity. This multimodal mechanism allows SNFM@Bi to eliminate over 99% of <i>Staphylococcus aureus</i> and 100% of <i>Escherichia coli</i> by disrupting biofilms, inducing lysis, and causing oxidative damage. In vivo evaluations demonstrated significant bacteria clearance, accelerated angiogenesis, and enhanced collagen deposition, contributing to rapid wound healing without systemic toxicity. Notably, SNFM@Bi detaches spontaneously after healing, avoiding chronic nanomaterial retention risks. This multifunctional antimicrobial platform offers a controllable, effective, and biocompatible therapeutic strategy for antimicrobial dressing design, with potential applications in biomedicine, environmental protection, and public health.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 5\",\"pages\":\"1529 - 1544\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00568-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00568-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的以抗生素为基础的治疗感染性伤口的方法往往面临平衡长期生物安全性、促进伤口愈合和有效根除细菌的挑战。在此,我们介绍了一种创新的“自上而下”的方法,通过逐渐剥离丝纤维来制造一维(1D)原始丝纳米纤维(snf),同时保留其固有的半晶体结构。这些SNFs为二维梅花状铋纳米片(bin)的原位生长提供了强大的模板,其各向异性形态提高了杀菌接触效率。通过真空过滤将装配了bins的snf (SNF@Bi)组装成膜(SNFM@Bi),显示出优异的生物相容性、光热效率和光动力活性。此外,酸性伤口微环境或近红外(NIR)照射触发了Bi3 +的释放,表现出纳米酶介导的催化活性。这种多模式机制允许SNFM@Bi通过破坏生物膜、诱导裂解和引起氧化损伤来消除99%以上的金黄色葡萄球菌和100%的大肠杆菌。在体内的评估显示了显著的细菌清除,加速血管生成,增强胶原沉积,有助于伤口快速愈合而没有全身毒性。值得注意的是,SNFM@Bi在愈合后会自发分离,避免了慢性纳米材料潴留的风险。该多功能抗菌平台为抗菌敷料设计提供了一种可控、有效、具有生物相容性的治疗策略,在生物医学、环境保护、公共卫生等领域具有潜在的应用前景。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bismuth-Nanosheet-Armed Pristine Silk Nanofiber Dressing for Multimodal Pathogenic Bacteria Eradication and Infected Wound Healing

Traditional antibiotic-based therapies for treating infectious wounds often face challenges in balancing long-term biosafety, promoting wound healing, and effectively eradicating bacteria. Herein, we introduce an innovative "top-down" approach to fabricating one-dimensional (1D) pristine silk nanofibers (SNFs) by the gradual exfoliation of silk fibers, preserving their inherent semi-crystalline structure. These SNFs functioned as a robust template for the in situ growth of two-dimensional (2D) plum blossom-like bismuth nanosheets (BiNS), whose anisotropic morphology enhances bactericidal contact efficiency. The resulting BiNS-equipped SNFs (SNF@Bi) are assembled into membranes (SNFM@Bi) via vacuum filtration, showing superior biocompatibility, photothermal efficiency, and photodynamic activity. Furthermore, the acidic wound microenvironment or near-infrared (NIR) irradiation triggered the release of Bi3⁺, exhibiting nanoenzyme-mediated catalytic activity. This multimodal mechanism allows SNFM@Bi to eliminate over 99% of Staphylococcus aureus and 100% of Escherichia coli by disrupting biofilms, inducing lysis, and causing oxidative damage. In vivo evaluations demonstrated significant bacteria clearance, accelerated angiogenesis, and enhanced collagen deposition, contributing to rapid wound healing without systemic toxicity. Notably, SNFM@Bi detaches spontaneously after healing, avoiding chronic nanomaterial retention risks. This multifunctional antimicrobial platform offers a controllable, effective, and biocompatible therapeutic strategy for antimicrobial dressing design, with potential applications in biomedicine, environmental protection, and public health.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信