留巷采空区残煤自燃模式及防治技术模拟研究

IF 0.9 4区 工程技术 Q4 CHEMISTRY, MULTIDISCIPLINARY
Ge Huang, Longqing Wu, Fengwei Dai, Xun Zhang
{"title":"留巷采空区残煤自燃模式及防治技术模拟研究","authors":"Ge Huang,&nbsp;Longqing Wu,&nbsp;Fengwei Dai,&nbsp;Xun Zhang","doi":"10.3103/S0361521925700259","DOIUrl":null,"url":null,"abstract":"<p>To address the severe issue of spontaneous combustion in residual coal within gob areas under gob-side entry retaining conditions, this study investigates fire prevention strategies during coal mining operations at the 22523 working face of Halaigou Coal Mine through integrated field measurements, experimental analyses, and numerical simulations. The findings reveal that the spontaneous combustion risk zones in gob-side entry retaining faces can be categorized into two distinct regions: the rear section of the working face and the gob-side entry area. The hazard distribution behind the working face demonstrates similarity to conventional “U”-type ventilation patterns, while the combustion risk in the entry-retained side primarily arises from the combined effects of leakage through flexible formwork walls, residual coal distribution patterns, and inherent coal oxidation characteristics. Progressive analysis demonstrates that the maximum oxidation zone and peak temperature locus migrate from the return air side toward the gob-side entry area with advancing face progression. Comparative evaluation of nitrogen injection strategies (single-point, uniform multi-point, and self-regulating multi-point configurations) demonstrates that the self-regulating nitrogen injection system achieves superior fire suppression efficacy compared to single-point injection while reducing nitrogen consumption by 43.3% relative to uniform multi-point injection. These empirical findings establish the technical and economic viability of the self-regulating injection protocol for practical implementation at the 22523 working face.</p>","PeriodicalId":779,"journal":{"name":"Solid Fuel Chemistry","volume":"59 5","pages":"355 - 376"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study on the Spontaneous Combustion Patterns and Prevention Technologies of Residual Coal in Goaf with Retained Roadway\",\"authors\":\"Ge Huang,&nbsp;Longqing Wu,&nbsp;Fengwei Dai,&nbsp;Xun Zhang\",\"doi\":\"10.3103/S0361521925700259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the severe issue of spontaneous combustion in residual coal within gob areas under gob-side entry retaining conditions, this study investigates fire prevention strategies during coal mining operations at the 22523 working face of Halaigou Coal Mine through integrated field measurements, experimental analyses, and numerical simulations. The findings reveal that the spontaneous combustion risk zones in gob-side entry retaining faces can be categorized into two distinct regions: the rear section of the working face and the gob-side entry area. The hazard distribution behind the working face demonstrates similarity to conventional “U”-type ventilation patterns, while the combustion risk in the entry-retained side primarily arises from the combined effects of leakage through flexible formwork walls, residual coal distribution patterns, and inherent coal oxidation characteristics. Progressive analysis demonstrates that the maximum oxidation zone and peak temperature locus migrate from the return air side toward the gob-side entry area with advancing face progression. Comparative evaluation of nitrogen injection strategies (single-point, uniform multi-point, and self-regulating multi-point configurations) demonstrates that the self-regulating nitrogen injection system achieves superior fire suppression efficacy compared to single-point injection while reducing nitrogen consumption by 43.3% relative to uniform multi-point injection. These empirical findings establish the technical and economic viability of the self-regulating injection protocol for practical implementation at the 22523 working face.</p>\",\"PeriodicalId\":779,\"journal\":{\"name\":\"Solid Fuel Chemistry\",\"volume\":\"59 5\",\"pages\":\"355 - 376\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid Fuel Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0361521925700259\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Fuel Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0361521925700259","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对空侧留巷条件下采空区残余煤自燃严重的问题,通过现场实测、实验分析和数值模拟相结合的方法,对哈拉沟煤矿22523工作面采煤作业中的防火策略进行了研究。结果表明,采空区留巷工作面自燃危险区可划分为工作面后段和采空区留巷区两个不同的区域。工作面后危险性分布与传统的“U”型通风模式相似,进入留巷侧燃烧危险性主要由柔性模板墙渗漏、残余煤分布模式和煤固有氧化特性共同作用产生。逐级分析表明,随着工作面推进,最大氧化区和峰值温度轨迹由回风侧向采空区倾斜。对单点、均匀多点和自调节多点三种注氮方式的对比评价表明,自调节式注氮系统灭火效果优于单点注氮,且比均匀多点注氮减少43.3%。这些经验发现为在22523工作面实际实施自调节注入方案奠定了技术和经济可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simulation Study on the Spontaneous Combustion Patterns and Prevention Technologies of Residual Coal in Goaf with Retained Roadway

Simulation Study on the Spontaneous Combustion Patterns and Prevention Technologies of Residual Coal in Goaf with Retained Roadway

Simulation Study on the Spontaneous Combustion Patterns and Prevention Technologies of Residual Coal in Goaf with Retained Roadway

To address the severe issue of spontaneous combustion in residual coal within gob areas under gob-side entry retaining conditions, this study investigates fire prevention strategies during coal mining operations at the 22523 working face of Halaigou Coal Mine through integrated field measurements, experimental analyses, and numerical simulations. The findings reveal that the spontaneous combustion risk zones in gob-side entry retaining faces can be categorized into two distinct regions: the rear section of the working face and the gob-side entry area. The hazard distribution behind the working face demonstrates similarity to conventional “U”-type ventilation patterns, while the combustion risk in the entry-retained side primarily arises from the combined effects of leakage through flexible formwork walls, residual coal distribution patterns, and inherent coal oxidation characteristics. Progressive analysis demonstrates that the maximum oxidation zone and peak temperature locus migrate from the return air side toward the gob-side entry area with advancing face progression. Comparative evaluation of nitrogen injection strategies (single-point, uniform multi-point, and self-regulating multi-point configurations) demonstrates that the self-regulating nitrogen injection system achieves superior fire suppression efficacy compared to single-point injection while reducing nitrogen consumption by 43.3% relative to uniform multi-point injection. These empirical findings establish the technical and economic viability of the self-regulating injection protocol for practical implementation at the 22523 working face.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid Fuel Chemistry
Solid Fuel Chemistry CHEMISTRY, MULTIDISCIPLINARY-ENERGY & FUELS
CiteScore
1.10
自引率
28.60%
发文量
52
审稿时长
6-12 weeks
期刊介绍: The journal publishes theoretical and applied articles on the chemistry and physics of solid fuels and carbonaceous materials. It addresses the composition, structure, and properties of solid fuels. The aim of the published articles is to demonstrate how novel discoveries, developments, and theories may be used in improved analysis and design of new types of fuels, chemicals, and by-products. The journal is particularly concerned with technological aspects of various chemical conversion processes and includes papers related to geochemistry, petrology and systematization of fossil fuels, their beneficiation and preparation for processing, the processes themselves, and the ultimate recovery of the liquid or gaseous end products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信