结合土地覆盖数据和光谱库的Landsat 9数据地表发射率反演

IF 4.4
Qi Zhang;Yonggang Qian;Kun Li;Qiyao Li;Jianmin Wang;Dacheng Li
{"title":"结合土地覆盖数据和光谱库的Landsat 9数据地表发射率反演","authors":"Qi Zhang;Yonggang Qian;Kun Li;Qiyao Li;Jianmin Wang;Dacheng Li","doi":"10.1109/LGRS.2025.3601391","DOIUrl":null,"url":null,"abstract":"Land surface emissivity (LSE) is crucial for retrieving land surface temperature (LST) from Landsat 9 TIRS-2 thermal infrared (TIR) data. However, the single-band LSE product (band 10) provided officially is insufficient for the split-window (SW) algorithm requiring dual-band emissivity inputs. This letter proposes a land cover and channel transformed-LSE (LCCT-LSE) method to estimate band 11 LSE and enables LST retrieval using the SW algorithm on Google Earth Engine. Cross-validation with MOD21 LSE products showed that the LCCT-LSE method achieved a mean absolute error (MAE) of 0.004 and a root mean square error (RMSE) of 0.005, outperforming the classification-based method, NDVI threshold method, and vegetation cover vegetation cover-based method (VCM) methods. In situ validation showed SW-retrieved LST attains MAE/RMSE of 1.27/2.13 K, with consistent accuracy across diverse land covers (water: 0.86 K, soil: 1.58 K, desert: 1.71 K, sand: 1.80 K, and vegetation: 0.87 K). A comparison with the official Landsat 9 LST product indicated that the bias of retrieved LST is within 1 K for all land cover classes (cropland, forest, grassland, shrubland, water, barren, and impervious) in Beijing. These results demonstrated that the LCCT-LSE method is capable of estimating the LSE in Landsat 9 band 11 with a reliable and accurate result. This study provides a new insight for LST retrieval from Landsat 9 data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land Surface Emissivity Retrieval From Landsat 9 Data in Combination With Land Cover Data and Spectral Library\",\"authors\":\"Qi Zhang;Yonggang Qian;Kun Li;Qiyao Li;Jianmin Wang;Dacheng Li\",\"doi\":\"10.1109/LGRS.2025.3601391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land surface emissivity (LSE) is crucial for retrieving land surface temperature (LST) from Landsat 9 TIRS-2 thermal infrared (TIR) data. However, the single-band LSE product (band 10) provided officially is insufficient for the split-window (SW) algorithm requiring dual-band emissivity inputs. This letter proposes a land cover and channel transformed-LSE (LCCT-LSE) method to estimate band 11 LSE and enables LST retrieval using the SW algorithm on Google Earth Engine. Cross-validation with MOD21 LSE products showed that the LCCT-LSE method achieved a mean absolute error (MAE) of 0.004 and a root mean square error (RMSE) of 0.005, outperforming the classification-based method, NDVI threshold method, and vegetation cover vegetation cover-based method (VCM) methods. In situ validation showed SW-retrieved LST attains MAE/RMSE of 1.27/2.13 K, with consistent accuracy across diverse land covers (water: 0.86 K, soil: 1.58 K, desert: 1.71 K, sand: 1.80 K, and vegetation: 0.87 K). A comparison with the official Landsat 9 LST product indicated that the bias of retrieved LST is within 1 K for all land cover classes (cropland, forest, grassland, shrubland, water, barren, and impervious) in Beijing. These results demonstrated that the LCCT-LSE method is capable of estimating the LSE in Landsat 9 band 11 with a reliable and accurate result. This study provides a new insight for LST retrieval from Landsat 9 data.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11132388/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11132388/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地表发射率(LSE)是Landsat 9 -2热红外数据反演地表温度(LST)的关键参数。然而,官方提供的单波段LSE产品(波段10)不足以满足需要双波段发射率输入的分窗(SW)算法。本文提出了一种土地覆盖和信道变换LSE (LCCT-LSE)方法来估计11波段LSE,并在谷歌Earth Engine上使用SW算法实现LST检索。与MOD21 LSE产品的交叉验证表明,LCCT-LSE方法的平均绝对误差(MAE)为0.004,均方根误差(RMSE)为0.005,优于基于分类的方法、NDVI阈值方法和植被覆盖度基于植被覆盖度的方法(VCM)。原位验证表明,sw反演的LST的MAE/RMSE为1.27/2.13 K,在不同的土地覆盖范围(水:0.86 K,土壤:1.58 K,沙漠:1.71 K,沙子:1.80 K,植被:0.87 K)具有一致的精度。与官方Landsat 9地表温度产品的比较表明,北京所有土地覆盖类型(农田、森林、草地、灌丛、水、贫瘠和不透水)的反演地表温度偏差在1 K以内。这些结果表明,LCCT-LSE方法能够估计Landsat 9波段11的LSE,结果可靠、准确。该研究为Landsat 9数据的地表温度反演提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Land Surface Emissivity Retrieval From Landsat 9 Data in Combination With Land Cover Data and Spectral Library
Land surface emissivity (LSE) is crucial for retrieving land surface temperature (LST) from Landsat 9 TIRS-2 thermal infrared (TIR) data. However, the single-band LSE product (band 10) provided officially is insufficient for the split-window (SW) algorithm requiring dual-band emissivity inputs. This letter proposes a land cover and channel transformed-LSE (LCCT-LSE) method to estimate band 11 LSE and enables LST retrieval using the SW algorithm on Google Earth Engine. Cross-validation with MOD21 LSE products showed that the LCCT-LSE method achieved a mean absolute error (MAE) of 0.004 and a root mean square error (RMSE) of 0.005, outperforming the classification-based method, NDVI threshold method, and vegetation cover vegetation cover-based method (VCM) methods. In situ validation showed SW-retrieved LST attains MAE/RMSE of 1.27/2.13 K, with consistent accuracy across diverse land covers (water: 0.86 K, soil: 1.58 K, desert: 1.71 K, sand: 1.80 K, and vegetation: 0.87 K). A comparison with the official Landsat 9 LST product indicated that the bias of retrieved LST is within 1 K for all land cover classes (cropland, forest, grassland, shrubland, water, barren, and impervious) in Beijing. These results demonstrated that the LCCT-LSE method is capable of estimating the LSE in Landsat 9 band 11 with a reliable and accurate result. This study provides a new insight for LST retrieval from Landsat 9 data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信