文化智力的预测因素:自动化机器学习与PLS-SEM

IF 4.9 2区 管理学 Q1 MANAGEMENT
Vas Taras , Marketa Rickley , Ilan Alon , Longzhu Dong , Hilde Malmin
{"title":"文化智力的预测因素:自动化机器学习与PLS-SEM","authors":"Vas Taras ,&nbsp;Marketa Rickley ,&nbsp;Ilan Alon ,&nbsp;Longzhu Dong ,&nbsp;Hilde Malmin","doi":"10.1016/j.intman.2025.101290","DOIUrl":null,"url":null,"abstract":"<div><div>This study applies a dual-method analytical approach combining Automated Machine Learning (AML) and PLS-SEM to investigate the predictors of Cultural Intelligence (CQ), one of the most commonly used constructs in international business (IB) research. Our research seeks to (1) explore a wide range of potential CQ predictors, and (2) demonstrate how AML and PLS-SEM methodologies can complement each other in IB research. Using a large international sample of 58,784 participants from 160 countries, we find that while international experience and personality traits predict CQ as expected, English language proficiency and emotional intelligence also emerge as significant predictors. The methodological comparison confirms that AML excels in exploratory pattern detection and handling complex datasets, while PLS-SEM enables theory testing and structural validation. The integration of both methods yields richer insights than either method alone. Implications for practice and research are discussed, and guidelines for using AML and PLS-SEM in IB research are provided.</div></div>","PeriodicalId":47937,"journal":{"name":"Journal of International Management","volume":"31 5","pages":"Article 101290"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictors of Cultural Intelligence: Automated Machine Learning vs. PLS-SEM\",\"authors\":\"Vas Taras ,&nbsp;Marketa Rickley ,&nbsp;Ilan Alon ,&nbsp;Longzhu Dong ,&nbsp;Hilde Malmin\",\"doi\":\"10.1016/j.intman.2025.101290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study applies a dual-method analytical approach combining Automated Machine Learning (AML) and PLS-SEM to investigate the predictors of Cultural Intelligence (CQ), one of the most commonly used constructs in international business (IB) research. Our research seeks to (1) explore a wide range of potential CQ predictors, and (2) demonstrate how AML and PLS-SEM methodologies can complement each other in IB research. Using a large international sample of 58,784 participants from 160 countries, we find that while international experience and personality traits predict CQ as expected, English language proficiency and emotional intelligence also emerge as significant predictors. The methodological comparison confirms that AML excels in exploratory pattern detection and handling complex datasets, while PLS-SEM enables theory testing and structural validation. The integration of both methods yields richer insights than either method alone. Implications for practice and research are discussed, and guidelines for using AML and PLS-SEM in IB research are provided.</div></div>\",\"PeriodicalId\":47937,\"journal\":{\"name\":\"Journal of International Management\",\"volume\":\"31 5\",\"pages\":\"Article 101290\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of International Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1075425325000687\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of International Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1075425325000687","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用自动化机器学习(AML)和PLS-SEM相结合的双方法分析方法来研究文化智力(CQ)的预测因素,这是国际商业(IB)研究中最常用的结构之一。我们的研究旨在(1)探索广泛的潜在CQ预测因子,以及(2)证明AML和PLS-SEM方法如何在IB研究中相互补充。通过对来自160个国家的58,784名参与者的大型国际样本的研究,我们发现,虽然国际经验和人格特征可以预测CQ,但英语语言能力和情商也可以作为重要的预测因素。方法比较证实,AML在探索性模式检测和处理复杂数据集方面表现出色,而PLS-SEM则可以进行理论测试和结构验证。两种方法的集成比单独使用任何一种方法产生更丰富的见解。对实践和研究的影响进行了讨论,并提供了在IB研究中使用AML和PLS-SEM的指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictors of Cultural Intelligence: Automated Machine Learning vs. PLS-SEM
This study applies a dual-method analytical approach combining Automated Machine Learning (AML) and PLS-SEM to investigate the predictors of Cultural Intelligence (CQ), one of the most commonly used constructs in international business (IB) research. Our research seeks to (1) explore a wide range of potential CQ predictors, and (2) demonstrate how AML and PLS-SEM methodologies can complement each other in IB research. Using a large international sample of 58,784 participants from 160 countries, we find that while international experience and personality traits predict CQ as expected, English language proficiency and emotional intelligence also emerge as significant predictors. The methodological comparison confirms that AML excels in exploratory pattern detection and handling complex datasets, while PLS-SEM enables theory testing and structural validation. The integration of both methods yields richer insights than either method alone. Implications for practice and research are discussed, and guidelines for using AML and PLS-SEM in IB research are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
9.80%
发文量
67
审稿时长
81 days
期刊介绍: The Journal of International Management is devoted to advancing an understanding of issues in the management of global enterprises, global management theory, and practice; and providing theoretical and managerial implications useful for the further development of research. It is designed to serve an audience of academic researchers and educators, as well as business professionals, by publishing both theoretical and empirical research relating to international management and strategy issues. JIM publishes theoretical and empirical research addressing international business strategy, comparative and cross-cultural management, risk management, organizational behavior, and human resource management, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信