推进CO2在水溶液中的溶解度预测:用于CCUS应用的机器学习方法

IF 4.6 0 ENERGY & FUELS
Gideon Gyamfi, Xiaoli Li
{"title":"推进CO2在水溶液中的溶解度预测:用于CCUS应用的机器学习方法","authors":"Gideon Gyamfi,&nbsp;Xiaoli Li","doi":"10.1016/j.geoen.2025.214175","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting CO<sub>2</sub> solubility in aqueous solution (pure water and brines) is essential for optimizing carbon capture, utilization, and storage (CCUS) processes. In this study, the experimental dataset consists of various salts, specifically sodium chloride (NaCl), calcium chloride (CaCl<sub>2</sub>), magnesium chloride (MgCl<sub>2</sub>), potassium chloride (KCl), sodium bicarbonate (NaHCO<sub>3</sub>), sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>), potassium carbonate (K<sub>2</sub>CO<sub>3</sub>), and magnesium sulfate (MgSO<sub>4</sub>). The comprehensive dataset encompasses a range of pressures (0.1–50 MPa), temperatures (274–453 K), and salinity levels (0–15 mol/kg). The objective is to develop a robust predictive model for CO<sub>2</sub> solubility utilizing advanced machine learning methodologies, specifically Random Forest (RF), Gradient Boosting (GB), and an Ensemble algorithm. Data preprocessing entails standardization, outlier elimination, and the conversion of salinity to ionic strength via the Debye-Hückel method. Additionally, hyperparameter optimization and cross-validation are employed to enhance the robustness of the model and mitigate overfitting. Among the implemented models, the Ensemble model exhibits the best performance, statistically, achieving R-square values of 0.9916, 0.9832, and 0.9934 and mean squared error values of 0.0078, 0.0122, and 0.0056 for training, validation, and testing datasets respectively. Sensitivity analyses of feature importance indicate that pressure is the predominant factor influencing CO<sub>2</sub> solubility, followed closely by ionic strength and temperature. Furthermore, the study identifies potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) as exhibiting a notably high affinity for CO<sub>2</sub>, especially at a temperature of 353 K. Visualizing predictive trends in CO<sub>2</sub> solubility across varying concentrations of ionic strength, temperature, and pressure substantiates the models’ capacity to accurately capture the intricate interactions among these parameters. These results provide a robust and accurate framework for predicting CO<sub>2</sub> solubility, advancing CCUS strategies, and enhancing understanding of CO<sub>2</sub> behavior in brine systems under diverse conditions.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"257 ","pages":"Article 214175"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing CO2 solubility prediction in aqueous solutions: A machine learning approach for CCUS application\",\"authors\":\"Gideon Gyamfi,&nbsp;Xiaoli Li\",\"doi\":\"10.1016/j.geoen.2025.214175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurately predicting CO<sub>2</sub> solubility in aqueous solution (pure water and brines) is essential for optimizing carbon capture, utilization, and storage (CCUS) processes. In this study, the experimental dataset consists of various salts, specifically sodium chloride (NaCl), calcium chloride (CaCl<sub>2</sub>), magnesium chloride (MgCl<sub>2</sub>), potassium chloride (KCl), sodium bicarbonate (NaHCO<sub>3</sub>), sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>), potassium carbonate (K<sub>2</sub>CO<sub>3</sub>), and magnesium sulfate (MgSO<sub>4</sub>). The comprehensive dataset encompasses a range of pressures (0.1–50 MPa), temperatures (274–453 K), and salinity levels (0–15 mol/kg). The objective is to develop a robust predictive model for CO<sub>2</sub> solubility utilizing advanced machine learning methodologies, specifically Random Forest (RF), Gradient Boosting (GB), and an Ensemble algorithm. Data preprocessing entails standardization, outlier elimination, and the conversion of salinity to ionic strength via the Debye-Hückel method. Additionally, hyperparameter optimization and cross-validation are employed to enhance the robustness of the model and mitigate overfitting. Among the implemented models, the Ensemble model exhibits the best performance, statistically, achieving R-square values of 0.9916, 0.9832, and 0.9934 and mean squared error values of 0.0078, 0.0122, and 0.0056 for training, validation, and testing datasets respectively. Sensitivity analyses of feature importance indicate that pressure is the predominant factor influencing CO<sub>2</sub> solubility, followed closely by ionic strength and temperature. Furthermore, the study identifies potassium carbonate (K<sub>2</sub>CO<sub>3</sub>) as exhibiting a notably high affinity for CO<sub>2</sub>, especially at a temperature of 353 K. Visualizing predictive trends in CO<sub>2</sub> solubility across varying concentrations of ionic strength, temperature, and pressure substantiates the models’ capacity to accurately capture the intricate interactions among these parameters. These results provide a robust and accurate framework for predicting CO<sub>2</sub> solubility, advancing CCUS strategies, and enhancing understanding of CO<sub>2</sub> behavior in brine systems under diverse conditions.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"257 \",\"pages\":\"Article 214175\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025005330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025005330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测CO2在水溶液(纯水和盐水)中的溶解度对于优化碳捕获、利用和封存(CCUS)过程至关重要。在本研究中,实验数据集由各种盐组成,特别是氯化钠(NaCl)、氯化钙(CaCl2)、氯化镁(MgCl2)、氯化钾(KCl)、碳酸氢钠(NaHCO3)、硫酸钠(Na2SO4)、碳酸钾(K2CO3)和硫酸镁(MgSO4)。综合数据集包括压力(0.1-50 MPa),温度(274-453 K)和盐度水平(0-15 mol/kg)。目标是利用先进的机器学习方法,特别是随机森林(RF)、梯度增强(GB)和集成算法,开发一个强大的二氧化碳溶解度预测模型。数据预处理需要标准化,异常值消除,并通过debye - h ckel方法将盐度转换为离子强度。此外,采用超参数优化和交叉验证来增强模型的鲁棒性和减轻过拟合。在实现的模型中,集成模型表现最好,统计上,训练、验证和测试数据集的r平方值分别为0.9916、0.9832和0.9934,均方误差分别为0.0078、0.0122和0.0056。特征重要性敏感性分析表明,压力是影响CO2溶解度的主要因素,其次是离子强度和温度。此外,该研究还发现碳酸钾(K2CO3)对CO2具有明显的高亲和力,特别是在353 K的温度下。在不同浓度的离子强度、温度和压力下,CO2溶解度的可视化预测趋势证实了模型准确捕捉这些参数之间复杂相互作用的能力。这些结果为预测CO2溶解度、推进CCUS策略以及加深对不同条件下盐水系统中CO2行为的理解提供了一个强大而准确的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing CO2 solubility prediction in aqueous solutions: A machine learning approach for CCUS application
Accurately predicting CO2 solubility in aqueous solution (pure water and brines) is essential for optimizing carbon capture, utilization, and storage (CCUS) processes. In this study, the experimental dataset consists of various salts, specifically sodium chloride (NaCl), calcium chloride (CaCl2), magnesium chloride (MgCl2), potassium chloride (KCl), sodium bicarbonate (NaHCO3), sodium sulfate (Na2SO4), potassium carbonate (K2CO3), and magnesium sulfate (MgSO4). The comprehensive dataset encompasses a range of pressures (0.1–50 MPa), temperatures (274–453 K), and salinity levels (0–15 mol/kg). The objective is to develop a robust predictive model for CO2 solubility utilizing advanced machine learning methodologies, specifically Random Forest (RF), Gradient Boosting (GB), and an Ensemble algorithm. Data preprocessing entails standardization, outlier elimination, and the conversion of salinity to ionic strength via the Debye-Hückel method. Additionally, hyperparameter optimization and cross-validation are employed to enhance the robustness of the model and mitigate overfitting. Among the implemented models, the Ensemble model exhibits the best performance, statistically, achieving R-square values of 0.9916, 0.9832, and 0.9934 and mean squared error values of 0.0078, 0.0122, and 0.0056 for training, validation, and testing datasets respectively. Sensitivity analyses of feature importance indicate that pressure is the predominant factor influencing CO2 solubility, followed closely by ionic strength and temperature. Furthermore, the study identifies potassium carbonate (K2CO3) as exhibiting a notably high affinity for CO2, especially at a temperature of 353 K. Visualizing predictive trends in CO2 solubility across varying concentrations of ionic strength, temperature, and pressure substantiates the models’ capacity to accurately capture the intricate interactions among these parameters. These results provide a robust and accurate framework for predicting CO2 solubility, advancing CCUS strategies, and enhancing understanding of CO2 behavior in brine systems under diverse conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信