说服技巧对大型语言模型的影响:基于场景的研究

Sonali Uttam Singh, Akbar Siami Namin
{"title":"说服技巧对大型语言模型的影响:基于场景的研究","authors":"Sonali Uttam Singh,&nbsp;Akbar Siami Namin","doi":"10.1016/j.chbah.2025.100197","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models (LLMs), such as CHATGPT-4, have introduced comprehensive capabilities in generating human-like text. However, they also raise significant ethical concerns due to their potential to produce misleading or manipulative content. This paper investigates the intersection of LLM functionalities and Cialdini’s six principles of persuasion: reciprocity, commitment and consistency, social proof, authority, liking, and scarcity. We explore how these principles can be exploited to deceive LLMs, particularly in scenarios designed to manipulate these models into providing misleading or harmful outputs. Through a scenario-based approach, over 30 prompts were crafted to test the susceptibility of LLMs to various persuasion principles. The study analyzes the success or failure of these prompts using interaction analysis, identifying different stages of deception ranging from spontaneous deception to more advanced, socially complex forms.</div><div>Results indicate that LLMs are highly susceptible to manipulation, with 15 scenarios achieving advanced, socially aware deceptions (Stage 3), particularly through principles like liking and scarcity. Early stage manipulations (Stage 1) were also common, driven by reciprocity and authority, while intermediate efforts (Stage 2) highlighted in-stage tactics such as social proof. These findings underscore the urgent need for robust mitigation strategies, including resistance mechanisms at lower stages and training LLMs with counter persuasive strategies to prevent their exploitation. More than technical details, it raises important concerns about how AI might be used to mislead people. From online scams to the spread of misinformation, persuasive content generated by LLMs has the potential to impact both individual safety and public trust. These tools can shape how people think, what they believe, and even how they act often without users realizing it. With this work, we hope to open up a broader conversation across disciplines about these risks and encourage the development of practical, ethical safeguards that ensure language models remain helpful, transparent, and trustworthy. This research contributes to the broader discourse on AI ethics, highlighting the vulnerabilities of LLMs and advocating for stronger responsibility measures to prevent their misuse in producing deceptive content. The results describe the importance of developing secure, transparent AI technologies that maintain integrity in human–machine interactions.</div></div>","PeriodicalId":100324,"journal":{"name":"Computers in Human Behavior: Artificial Humans","volume":"6 ","pages":"Article 100197"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of persuasive techniques on large language models: A scenario-based study\",\"authors\":\"Sonali Uttam Singh,&nbsp;Akbar Siami Namin\",\"doi\":\"10.1016/j.chbah.2025.100197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large Language Models (LLMs), such as CHATGPT-4, have introduced comprehensive capabilities in generating human-like text. However, they also raise significant ethical concerns due to their potential to produce misleading or manipulative content. This paper investigates the intersection of LLM functionalities and Cialdini’s six principles of persuasion: reciprocity, commitment and consistency, social proof, authority, liking, and scarcity. We explore how these principles can be exploited to deceive LLMs, particularly in scenarios designed to manipulate these models into providing misleading or harmful outputs. Through a scenario-based approach, over 30 prompts were crafted to test the susceptibility of LLMs to various persuasion principles. The study analyzes the success or failure of these prompts using interaction analysis, identifying different stages of deception ranging from spontaneous deception to more advanced, socially complex forms.</div><div>Results indicate that LLMs are highly susceptible to manipulation, with 15 scenarios achieving advanced, socially aware deceptions (Stage 3), particularly through principles like liking and scarcity. Early stage manipulations (Stage 1) were also common, driven by reciprocity and authority, while intermediate efforts (Stage 2) highlighted in-stage tactics such as social proof. These findings underscore the urgent need for robust mitigation strategies, including resistance mechanisms at lower stages and training LLMs with counter persuasive strategies to prevent their exploitation. More than technical details, it raises important concerns about how AI might be used to mislead people. From online scams to the spread of misinformation, persuasive content generated by LLMs has the potential to impact both individual safety and public trust. These tools can shape how people think, what they believe, and even how they act often without users realizing it. With this work, we hope to open up a broader conversation across disciplines about these risks and encourage the development of practical, ethical safeguards that ensure language models remain helpful, transparent, and trustworthy. This research contributes to the broader discourse on AI ethics, highlighting the vulnerabilities of LLMs and advocating for stronger responsibility measures to prevent their misuse in producing deceptive content. The results describe the importance of developing secure, transparent AI technologies that maintain integrity in human–machine interactions.</div></div>\",\"PeriodicalId\":100324,\"journal\":{\"name\":\"Computers in Human Behavior: Artificial Humans\",\"volume\":\"6 \",\"pages\":\"Article 100197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Human Behavior: Artificial Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949882125000817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Human Behavior: Artificial Humans","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949882125000817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm),如CHATGPT-4,已经引入了生成类人文本的综合功能。然而,由于它们可能产生误导或操纵内容,它们也引起了重大的伦理问题。本文研究了法学硕士功能与Cialdini的六个说服原则的交集:互惠、承诺和一致性、社会证明、权威、喜欢和稀缺性。我们将探讨如何利用这些原则来欺骗法学硕士,特别是在设计操纵这些模型以提供误导性或有害输出的场景中。通过基于场景的方法,设计了30多个提示,以测试法学硕士对各种说服原则的敏感性。该研究使用交互分析分析了这些提示的成功或失败,确定了欺骗的不同阶段,从自发的欺骗到更高级的、社会复杂的形式。结果表明,法学硕士极易受到操纵,有15个场景实现了高级的、社会意识的欺骗(阶段3),特别是通过喜欢和稀缺等原则。早期阶段的操纵(阶段1)也很常见,由互惠和权威驱动,而中期努力(阶段2)强调了阶段内的策略,如社会证明。这些研究结果强调,迫切需要制定强有力的缓解战略,包括在较低阶段建立抵制机制,并对法学硕士进行反说服战略培训,以防止其被利用。除了技术细节之外,它还引发了人们对人工智能可能被用来误导人们的重要担忧。从网络诈骗到错误信息的传播,法学硕士产生的有说服力的内容有可能影响个人安全和公众信任。这些工具可以塑造人们的思维方式,他们的信仰,甚至是他们在用户没有意识到的情况下的行为。通过这项工作,我们希望就这些风险展开更广泛的跨学科对话,并鼓励开发实用的、道德的保障措施,以确保语言模型保持有用、透明和值得信赖。这项研究有助于更广泛地讨论人工智能伦理,强调法学硕士的脆弱性,并倡导采取更强有力的责任措施,以防止法学硕士在生产欺骗性内容时被滥用。研究结果描述了开发安全、透明的人工智能技术在人机交互中保持完整性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of persuasive techniques on large language models: A scenario-based study
Large Language Models (LLMs), such as CHATGPT-4, have introduced comprehensive capabilities in generating human-like text. However, they also raise significant ethical concerns due to their potential to produce misleading or manipulative content. This paper investigates the intersection of LLM functionalities and Cialdini’s six principles of persuasion: reciprocity, commitment and consistency, social proof, authority, liking, and scarcity. We explore how these principles can be exploited to deceive LLMs, particularly in scenarios designed to manipulate these models into providing misleading or harmful outputs. Through a scenario-based approach, over 30 prompts were crafted to test the susceptibility of LLMs to various persuasion principles. The study analyzes the success or failure of these prompts using interaction analysis, identifying different stages of deception ranging from spontaneous deception to more advanced, socially complex forms.
Results indicate that LLMs are highly susceptible to manipulation, with 15 scenarios achieving advanced, socially aware deceptions (Stage 3), particularly through principles like liking and scarcity. Early stage manipulations (Stage 1) were also common, driven by reciprocity and authority, while intermediate efforts (Stage 2) highlighted in-stage tactics such as social proof. These findings underscore the urgent need for robust mitigation strategies, including resistance mechanisms at lower stages and training LLMs with counter persuasive strategies to prevent their exploitation. More than technical details, it raises important concerns about how AI might be used to mislead people. From online scams to the spread of misinformation, persuasive content generated by LLMs has the potential to impact both individual safety and public trust. These tools can shape how people think, what they believe, and even how they act often without users realizing it. With this work, we hope to open up a broader conversation across disciplines about these risks and encourage the development of practical, ethical safeguards that ensure language models remain helpful, transparent, and trustworthy. This research contributes to the broader discourse on AI ethics, highlighting the vulnerabilities of LLMs and advocating for stronger responsibility measures to prevent their misuse in producing deceptive content. The results describe the importance of developing secure, transparent AI technologies that maintain integrity in human–machine interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信