{"title":"肥皂膜启发的分区点阵结构构造","authors":"Guoyue Luo, Qiang Zou","doi":"10.1016/j.cad.2025.103950","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice structures, distinguished by their customizable geometries at the microscale and outstanding mechanical performance, have found widespread application across various industries. One fundamental process in their design and manufacturing is constructing boundary representation (B-rep) models, which are essential for running advanced applications like simulation, optimization, and process planning. However, this construction process presents significant challenges due to the high complexity of lattice structures, particularly in generating nodal shapes where robustness and smoothness issues can arise from the complex intersections between struts. To address these challenges, this paper proposes a novel approach for lattice structure construction by cutting struts and filling void regions with subdivisional nodal shapes. Inspired by soap films, the method generates smooth, shape-preserving control meshes using Laplacian fairing and subdivides them through the point-normal Loop (PN-Loop) subdivision scheme to obtain subdivisional nodal shapes. The proposed method ensures robust model construction with reduced shape deviations, enhanced surface fairness, and smooth transitions between subdivisional nodal shapes and retained struts. The effectiveness of the method has been demonstrated by a series of examples and comparisons. The code and associated data have been made available at: <span><span>https://github.com/Qiang-Zou/Subdiv-Lattice</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"189 ","pages":"Article 103950"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soap Film-Inspired Subdivisional Lattice Structure Construction\",\"authors\":\"Guoyue Luo, Qiang Zou\",\"doi\":\"10.1016/j.cad.2025.103950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lattice structures, distinguished by their customizable geometries at the microscale and outstanding mechanical performance, have found widespread application across various industries. One fundamental process in their design and manufacturing is constructing boundary representation (B-rep) models, which are essential for running advanced applications like simulation, optimization, and process planning. However, this construction process presents significant challenges due to the high complexity of lattice structures, particularly in generating nodal shapes where robustness and smoothness issues can arise from the complex intersections between struts. To address these challenges, this paper proposes a novel approach for lattice structure construction by cutting struts and filling void regions with subdivisional nodal shapes. Inspired by soap films, the method generates smooth, shape-preserving control meshes using Laplacian fairing and subdivides them through the point-normal Loop (PN-Loop) subdivision scheme to obtain subdivisional nodal shapes. The proposed method ensures robust model construction with reduced shape deviations, enhanced surface fairness, and smooth transitions between subdivisional nodal shapes and retained struts. The effectiveness of the method has been demonstrated by a series of examples and comparisons. The code and associated data have been made available at: <span><span>https://github.com/Qiang-Zou/Subdiv-Lattice</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50632,\"journal\":{\"name\":\"Computer-Aided Design\",\"volume\":\"189 \",\"pages\":\"Article 103950\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010448525001113\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448525001113","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Soap Film-Inspired Subdivisional Lattice Structure Construction
Lattice structures, distinguished by their customizable geometries at the microscale and outstanding mechanical performance, have found widespread application across various industries. One fundamental process in their design and manufacturing is constructing boundary representation (B-rep) models, which are essential for running advanced applications like simulation, optimization, and process planning. However, this construction process presents significant challenges due to the high complexity of lattice structures, particularly in generating nodal shapes where robustness and smoothness issues can arise from the complex intersections between struts. To address these challenges, this paper proposes a novel approach for lattice structure construction by cutting struts and filling void regions with subdivisional nodal shapes. Inspired by soap films, the method generates smooth, shape-preserving control meshes using Laplacian fairing and subdivides them through the point-normal Loop (PN-Loop) subdivision scheme to obtain subdivisional nodal shapes. The proposed method ensures robust model construction with reduced shape deviations, enhanced surface fairness, and smooth transitions between subdivisional nodal shapes and retained struts. The effectiveness of the method has been demonstrated by a series of examples and comparisons. The code and associated data have been made available at: https://github.com/Qiang-Zou/Subdiv-Lattice.
期刊介绍:
Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design.
Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.