用有限元外演算求解冷等离子体模型的时间分裂方法

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Elena Moral Sánchez , Martin Campos Pinto , Yaman [Güşlü] , Omar Maj
{"title":"用有限元外演算求解冷等离子体模型的时间分裂方法","authors":"Elena Moral Sánchez ,&nbsp;Martin Campos Pinto ,&nbsp;Yaman [Güşlü] ,&nbsp;Omar Maj","doi":"10.1016/j.jcp.2025.114305","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. We approximate an incoming wave boundary condition in such a way that the resulting schemes are compatible with a time-harmonic / transient decomposition of the solution, which allows us to establish their long-time stability. This approach readily applies to curvilinear and complex domains. We perform a numerical study of these schemes which compares their cost and accuracy against a standard Crank-Nicolson time integrator, and we run realistic simulations where the long-term behaviour is assessed using frequency-domain solutions. Our solvers are three-dimensional and parallel. They are implemented in the Python library PSYDAC, which makes them memory-efficient.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114305"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus\",\"authors\":\"Elena Moral Sánchez ,&nbsp;Martin Campos Pinto ,&nbsp;Yaman [Güşlü] ,&nbsp;Omar Maj\",\"doi\":\"10.1016/j.jcp.2025.114305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. We approximate an incoming wave boundary condition in such a way that the resulting schemes are compatible with a time-harmonic / transient decomposition of the solution, which allows us to establish their long-time stability. This approach readily applies to curvilinear and complex domains. We perform a numerical study of these schemes which compares their cost and accuracy against a standard Crank-Nicolson time integrator, and we run realistic simulations where the long-term behaviour is assessed using frequency-domain solutions. Our solvers are three-dimensional and parallel. They are implemented in the Python library PSYDAC, which makes them memory-efficient.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"541 \",\"pages\":\"Article 114305\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125005881\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125005881","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了描述电磁波在磁化等离子体中的传播的高阶结构保持离散化冷等离子体模型。利用b样条有限元外部微积分,导出了一种保留模型底层哈密顿结构的空间离散化方法,并研究了两个稳定的分时几何积分器。我们以这样一种方式近似入射波边界条件,即所得方案与解的时间谐波/瞬态分解相容,这使我们能够建立它们的长期稳定性。这种方法很容易适用于曲线和复杂的领域。我们对这些方案进行了数值研究,将它们的成本和精度与标准的Crank-Nicolson时间积分器进行了比较,并运行了现实的模拟,其中使用频域解决方案评估了长期行为。我们的求解器是三维平行的。它们是在Python库PSYDAC中实现的,这使得它们具有内存效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-splitting methods for the cold-plasma model using Finite Element Exterior Calculus
In this work we propose a high-order structure-preserving discretization of the cold plasma model which describes the propagation of electromagnetic waves in magnetized plasmas. By utilizing B-Splines Finite Elements Exterior Calculus, we derive a space discretization that preserves the underlying Hamiltonian structure of the model, and we study two stable time-splitting geometrical integrators. We approximate an incoming wave boundary condition in such a way that the resulting schemes are compatible with a time-harmonic / transient decomposition of the solution, which allows us to establish their long-time stability. This approach readily applies to curvilinear and complex domains. We perform a numerical study of these schemes which compares their cost and accuracy against a standard Crank-Nicolson time integrator, and we run realistic simulations where the long-term behaviour is assessed using frequency-domain solutions. Our solvers are three-dimensional and parallel. They are implemented in the Python library PSYDAC, which makes them memory-efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信