掺锌PECVD纳米晶Ga2O3薄膜的气敏性能

Aleksei Almaev , Leonid Mochalov , Dmitry Almaev , Ekaterina Slapovskaya , Sergey Telegin , Bogdan Kushnarev , Pavel Yunin
{"title":"掺锌PECVD纳米晶Ga2O3薄膜的气敏性能","authors":"Aleksei Almaev ,&nbsp;Leonid Mochalov ,&nbsp;Dmitry Almaev ,&nbsp;Ekaterina Slapovskaya ,&nbsp;Sergey Telegin ,&nbsp;Bogdan Kushnarev ,&nbsp;Pavel Yunin","doi":"10.1016/j.rsurfi.2025.100633","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocrystalline Ga<sub>2</sub>O<sub>3</sub> thin films doped by Zn (nc-ZGO) were synthesized by plasma-enhanced chemical vapor deposition. Their gas-sensitive properties have been comprehensively investigated. The thin films exhibit high response and operation speed under exposure to industry-relevant gases such as CO, H<sub>2</sub>, NH<sub>3</sub> and NO<sub>2</sub>. The highest responses are achieved under H<sub>2</sub> exposure. The responses to 500 ppm and 10<sup>4</sup> ppm of H<sub>2</sub> are 2.99 a. u. and 24.5 a. u., respectively, at the maximum response temperature of 500 °C. The sum of the response and recovery times do not exceed 27.4 s. The nc-ZGO thin films show only a weak drift of their gas-sensitive characteristics during long-term exposure to CO, H<sub>2</sub>, and NO<sub>2</sub> as well as and a weak dependence of the gas-sensitive characteristics on the humidity level in the 10–50 % relative humidity range. A mechanism of the sensing effect of nc-ZGO thin films is proposed within the current paradigm.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"20 ","pages":"Article 100633"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas-sensitive properties of PECVD nanocrystalline Ga2O3 thin films doped with Zn\",\"authors\":\"Aleksei Almaev ,&nbsp;Leonid Mochalov ,&nbsp;Dmitry Almaev ,&nbsp;Ekaterina Slapovskaya ,&nbsp;Sergey Telegin ,&nbsp;Bogdan Kushnarev ,&nbsp;Pavel Yunin\",\"doi\":\"10.1016/j.rsurfi.2025.100633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanocrystalline Ga<sub>2</sub>O<sub>3</sub> thin films doped by Zn (nc-ZGO) were synthesized by plasma-enhanced chemical vapor deposition. Their gas-sensitive properties have been comprehensively investigated. The thin films exhibit high response and operation speed under exposure to industry-relevant gases such as CO, H<sub>2</sub>, NH<sub>3</sub> and NO<sub>2</sub>. The highest responses are achieved under H<sub>2</sub> exposure. The responses to 500 ppm and 10<sup>4</sup> ppm of H<sub>2</sub> are 2.99 a. u. and 24.5 a. u., respectively, at the maximum response temperature of 500 °C. The sum of the response and recovery times do not exceed 27.4 s. The nc-ZGO thin films show only a weak drift of their gas-sensitive characteristics during long-term exposure to CO, H<sub>2</sub>, and NO<sub>2</sub> as well as and a weak dependence of the gas-sensitive characteristics on the humidity level in the 10–50 % relative humidity range. A mechanism of the sensing effect of nc-ZGO thin films is proposed within the current paradigm.</div></div>\",\"PeriodicalId\":21085,\"journal\":{\"name\":\"Results in Surfaces and Interfaces\",\"volume\":\"20 \",\"pages\":\"Article 100633\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Surfaces and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266684592500220X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266684592500220X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用等离子体增强化学气相沉积法制备了掺杂Zn (nc-ZGO)的纳米晶Ga2O3薄膜。对其气敏性能进行了全面的研究。在CO、H2、NH3和NO2等工业相关气体中,薄膜表现出较高的响应和运行速度。最大的反应是在H2暴露下实现的。在500℃的最大响应温度下,H2浓度为500 ppm和104 ppm时的响应分别为2.99和24.5 a.u。响应时间和恢复时间之和不超过27.4 s。在CO、H2和NO2的长期暴露过程中,nc-ZGO薄膜的气敏特性表现出微弱的漂移,在10 ~ 50%的相对湿度范围内,其气敏特性对湿度的依赖性较弱。在现有的研究范式下,提出了纳米氧化锆薄膜传感效应的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-sensitive properties of PECVD nanocrystalline Ga2O3 thin films doped with Zn
Nanocrystalline Ga2O3 thin films doped by Zn (nc-ZGO) were synthesized by plasma-enhanced chemical vapor deposition. Their gas-sensitive properties have been comprehensively investigated. The thin films exhibit high response and operation speed under exposure to industry-relevant gases such as CO, H2, NH3 and NO2. The highest responses are achieved under H2 exposure. The responses to 500 ppm and 104 ppm of H2 are 2.99 a. u. and 24.5 a. u., respectively, at the maximum response temperature of 500 °C. The sum of the response and recovery times do not exceed 27.4 s. The nc-ZGO thin films show only a weak drift of their gas-sensitive characteristics during long-term exposure to CO, H2, and NO2 as well as and a weak dependence of the gas-sensitive characteristics on the humidity level in the 10–50 % relative humidity range. A mechanism of the sensing effect of nc-ZGO thin films is proposed within the current paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信