水溶性含羟基聚苯并恶唑-苯并咪唑-亚胺膜基H2/CO2分离

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Fan Hu, , , Jinpeng Luo, , , Shichao Feng, , , Liangqiang Wei, , , Shinji Ando, , , Yinhua Wan, , and , Yongbing Zhuang*, 
{"title":"水溶性含羟基聚苯并恶唑-苯并咪唑-亚胺膜基H2/CO2分离","authors":"Fan Hu,&nbsp;, ,&nbsp;Jinpeng Luo,&nbsp;, ,&nbsp;Shichao Feng,&nbsp;, ,&nbsp;Liangqiang Wei,&nbsp;, ,&nbsp;Shinji Ando,&nbsp;, ,&nbsp;Yinhua Wan,&nbsp;, and ,&nbsp;Yongbing Zhuang*,&nbsp;","doi":"10.1021/acs.macromol.5c01671","DOIUrl":null,"url":null,"abstract":"<p >Conventional polyimide (PI) membranes exhibit low H<sub>2</sub>/CO<sub>2</sub> selectivity (≤3.1). To address this limitation, this study synthesized a novel diamine monomer, 5-amino-2-(4-hydroxy-3-aminobenzene)-benzoxazole (OH-BOA), specifically designed with benzoxazole and hydroxyl functionalities. Subsequently, OH-BOA and its structural counterpart 5-amino-2-(4-hydroxy-3-aminobenzene)-benzimidazole (OH-BIA) were copolymerized with pyromellitic dianhydride (PMDA) to yield four hydroxy-functionalized poly(benzoxazole-benzimidazole-imide)s (OH-CoPIs). These OH-CoPIs exhibited good solubility, robust mechanical properties (tensile strength ≥ 114.9 MPa), high glass transition temperatures (<i>T</i><sub>g</sub> &gt; 400 °C), and low coefficients of thermal expansion (CTE ≤ 28.3 ppm/K). Notably, they achieved a significantly enhanced H<sub>2</sub>/CO<sub>2</sub> selectivity of up to 12.2, surpassing the commercial Matrimid 5218 (3.1) by 4-fold. Systematic evaluation revealed that increasing benzoxazole content reduced the CTE while enhancing tensile strength, Young’s modulus, and H<sub>2</sub>/CO<sub>2</sub> selectivity. The thermally rearranged membrane (TR-40CoPI-400, 400 °C) achieved high H<sub>2</sub> permeability (26.00 Barrer) with optimal selectivity (7.6) and exceptional CO<sub>2</sub> plasticization resistance. The synergistic integration of benzimidazole, benzoxazole, and hydroxyl groups enables high-performance PI membranes for H<sub>2</sub>/CO<sub>2</sub> separation.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 18","pages":"10120–10132"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soluble Hydroxy-Containing Poly(benzoxazole-benzimidazole-imide)s for Membrane-Based H2/CO2 Separation\",\"authors\":\"Fan Hu,&nbsp;, ,&nbsp;Jinpeng Luo,&nbsp;, ,&nbsp;Shichao Feng,&nbsp;, ,&nbsp;Liangqiang Wei,&nbsp;, ,&nbsp;Shinji Ando,&nbsp;, ,&nbsp;Yinhua Wan,&nbsp;, and ,&nbsp;Yongbing Zhuang*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Conventional polyimide (PI) membranes exhibit low H<sub>2</sub>/CO<sub>2</sub> selectivity (≤3.1). To address this limitation, this study synthesized a novel diamine monomer, 5-amino-2-(4-hydroxy-3-aminobenzene)-benzoxazole (OH-BOA), specifically designed with benzoxazole and hydroxyl functionalities. Subsequently, OH-BOA and its structural counterpart 5-amino-2-(4-hydroxy-3-aminobenzene)-benzimidazole (OH-BIA) were copolymerized with pyromellitic dianhydride (PMDA) to yield four hydroxy-functionalized poly(benzoxazole-benzimidazole-imide)s (OH-CoPIs). These OH-CoPIs exhibited good solubility, robust mechanical properties (tensile strength ≥ 114.9 MPa), high glass transition temperatures (<i>T</i><sub>g</sub> &gt; 400 °C), and low coefficients of thermal expansion (CTE ≤ 28.3 ppm/K). Notably, they achieved a significantly enhanced H<sub>2</sub>/CO<sub>2</sub> selectivity of up to 12.2, surpassing the commercial Matrimid 5218 (3.1) by 4-fold. Systematic evaluation revealed that increasing benzoxazole content reduced the CTE while enhancing tensile strength, Young’s modulus, and H<sub>2</sub>/CO<sub>2</sub> selectivity. The thermally rearranged membrane (TR-40CoPI-400, 400 °C) achieved high H<sub>2</sub> permeability (26.00 Barrer) with optimal selectivity (7.6) and exceptional CO<sub>2</sub> plasticization resistance. The synergistic integration of benzimidazole, benzoxazole, and hydroxyl groups enables high-performance PI membranes for H<sub>2</sub>/CO<sub>2</sub> separation.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 18\",\"pages\":\"10120–10132\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01671\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01671","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

传统的聚酰亚胺(PI)膜具有较低的H2/CO2选择性(≤3.1)。为了解决这一限制,本研究合成了一种新的二胺单体,5-氨基-2-(4-羟基-3-氨基苯)-苯并恶唑(OH-BOA),专门设计了具有苯并恶唑和羟基的功能。随后,OH-BOA及其结构对偶物5-氨基-2-(4-羟基-3-氨基苯)-苯并咪唑(OH-BIA)与邻苯二酸酐(PMDA)共聚,得到4个羟基功能化聚苯并恶唑-苯并咪唑-亚胺(OH-CoPIs)。这些oh - copi具有良好的溶解度、坚固的力学性能(抗拉强度≥114.9 MPa)、高玻璃化转变温度(Tg > 400℃)和低热膨胀系数(CTE≤28.3 ppm/K)。值得注意的是,他们实现了显著增强的H2/CO2选择性,高达12.2,超过商业Matrimid 5218(3.1)的4倍。系统评价表明,增加苯并恶唑含量可降低CTE,提高CTE的抗拉强度、杨氏模量和H2/CO2选择性。热重排膜(tr - 40copi - 400,400°C)具有较高的H2渗透率(26.00 Barrer),最佳选择性(7.6)和优异的CO2塑化性能。苯并咪唑,苯并恶唑和羟基的协同整合使高性能的PI膜用于H2/CO2分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Soluble Hydroxy-Containing Poly(benzoxazole-benzimidazole-imide)s for Membrane-Based H2/CO2 Separation

Soluble Hydroxy-Containing Poly(benzoxazole-benzimidazole-imide)s for Membrane-Based H2/CO2 Separation

Soluble Hydroxy-Containing Poly(benzoxazole-benzimidazole-imide)s for Membrane-Based H2/CO2 Separation

Conventional polyimide (PI) membranes exhibit low H2/CO2 selectivity (≤3.1). To address this limitation, this study synthesized a novel diamine monomer, 5-amino-2-(4-hydroxy-3-aminobenzene)-benzoxazole (OH-BOA), specifically designed with benzoxazole and hydroxyl functionalities. Subsequently, OH-BOA and its structural counterpart 5-amino-2-(4-hydroxy-3-aminobenzene)-benzimidazole (OH-BIA) were copolymerized with pyromellitic dianhydride (PMDA) to yield four hydroxy-functionalized poly(benzoxazole-benzimidazole-imide)s (OH-CoPIs). These OH-CoPIs exhibited good solubility, robust mechanical properties (tensile strength ≥ 114.9 MPa), high glass transition temperatures (Tg > 400 °C), and low coefficients of thermal expansion (CTE ≤ 28.3 ppm/K). Notably, they achieved a significantly enhanced H2/CO2 selectivity of up to 12.2, surpassing the commercial Matrimid 5218 (3.1) by 4-fold. Systematic evaluation revealed that increasing benzoxazole content reduced the CTE while enhancing tensile strength, Young’s modulus, and H2/CO2 selectivity. The thermally rearranged membrane (TR-40CoPI-400, 400 °C) achieved high H2 permeability (26.00 Barrer) with optimal selectivity (7.6) and exceptional CO2 plasticization resistance. The synergistic integration of benzimidazole, benzoxazole, and hydroxyl groups enables high-performance PI membranes for H2/CO2 separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信