{"title":"基于强化学习的不同合作类别自动驾驶车辆在信号交叉口的轨迹优化","authors":"Mengzhu Zhang, Junqiang Leng, Xiaoyan Huo, Qinzhong Hou","doi":"10.1049/itr2.70079","DOIUrl":null,"url":null,"abstract":"<p>Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70079","citationCount":"0","resultStr":"{\"title\":\"Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection\",\"authors\":\"Mengzhu Zhang, Junqiang Leng, Xiaoyan Huo, Qinzhong Hou\",\"doi\":\"10.1049/itr2.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70079\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection
Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf