基于强化学习的不同合作类别自动驾驶车辆在信号交叉口的轨迹优化

IF 2.5 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mengzhu Zhang, Junqiang Leng, Xiaoyan Huo, Qinzhong Hou
{"title":"基于强化学习的不同合作类别自动驾驶车辆在信号交叉口的轨迹优化","authors":"Mengzhu Zhang,&nbsp;Junqiang Leng,&nbsp;Xiaoyan Huo,&nbsp;Qinzhong Hou","doi":"10.1049/itr2.70079","DOIUrl":null,"url":null,"abstract":"<p>Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"19 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70079","citationCount":"0","resultStr":"{\"title\":\"Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection\",\"authors\":\"Mengzhu Zhang,&nbsp;Junqiang Leng,&nbsp;Xiaoyan Huo,&nbsp;Qinzhong Hou\",\"doi\":\"10.1049/itr2.70079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.70079\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70079\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/itr2.70079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于协同自动驾驶系统(C-ADS)的车辆在信号交叉口的轨迹优化研究都是在简化的协同行为假设下进行的,即所有车辆都接受并遵循规定的计划。为了研究配备C-ADS的车辆在不同合作类别下的轨迹优化问题,在强化学习(RL)框架内开发了一种深度确定性策略梯度(DDPG)算法,以及基于轨迹平滑(TS)的C-ADS系统和人类驾驶车辆场景的基线实现。实验结果表明,与基准方法相比,该方法显著降低了平均行驶时间(53.59%)和停车时间。此外,通过RL模型分析配备c - ads的车辆的不同合作类别,获得了信号交叉口性能改进的新见解,为改进协作式自动驾驶系统的控制策略提供了重要指导。本研究验证了利用DDPG算法的强化学习模型是提高协作式自动驾驶系统性能的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection

Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection

Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection

Trajectory Optimization for Automated Vehicles of Different Cooperation Classes Using Reinforcement Learning at a Signalized Intersection

Existing studies on trajectory optimization for cooperative automated driving systems (C-ADS) equipped vehicles at signalized intersections operate under a simplified assumption of cooperative behaviour: all vehicles accept and follow to the prescribed plans. To investigate trajectory optimization for C-ADS-equipped vehicles with different cooperation classes, a deep deterministic policy gradient (DDPG) algorithm was developed within a reinforcement learning (RL) framework, alongside baseline implementations of trajectory smoothing (TS)-based C-ADS systems and human-driven vehicle scenarios. Experimental results indicate that the proposed methodology achieves significant reductions in average travel time (53.59%) and stop times, compared to benchmark approaches. Furthermore, novel insights into the performance improvements at signalized intersections were derived from analysing different cooperation classes of C-ADS-equipped vehicles via the RL model, providing critical guidance for refining control strategies in cooperative automated driving systems. This study validates that RL models utilizing the DDPG algorithm serve as effective tools for enhancing the performance of cooperative automated driving systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信