利用卫星影像时间序列桥接时空光谱特征:TAS2B-Net作物语义分割

IF 4.4
Xiaohan Luo;Hangyu Dai;Vladimir Lysenko;Jinglu Tan;Ya Guo
{"title":"利用卫星影像时间序列桥接时空光谱特征:TAS2B-Net作物语义分割","authors":"Xiaohan Luo;Hangyu Dai;Vladimir Lysenko;Jinglu Tan;Ya Guo","doi":"10.1109/LGRS.2025.3603294","DOIUrl":null,"url":null,"abstract":"Semantic segmentation based on satellite image time series (SITS) is fundamental to a wide range of geospatial applications, including land cover mapping and urban development analysis. By integrating crop phenological dynamics over time, SITS provides richer spatiotemporal information than static satellite imagery. However, existing models fail to effectively process the temporal and spatial–spectral dimensions of SITS independently, leading to reduced segmentation accuracy. In this letter, we propose a temporal aggregation spatial–spectral bridge network (TAS2B-Net), a novel architecture designed to extract fine-grained crop features from SITS. The network consists of two key components: the pixel-aware grouping temporal integrator (PGTI), which captures temporal dependencies within pixel groups, and the edge-aware contextual fusion head (ECFH), which enhances spatial boundary and global structural representation. Additionally, we introduce a lightweight multiscale spectral decoder (LMSD) to aggregate contextual information across multiple spectral scales, further improving feature learning for semantic segmentation. Extensive experiments on the panoptic agricultural satellite time series (PASTIS) and MTLCC datasets show that the proposed network achieves mIoU scores of 68.91% and 84.59%, respectively, outperforming eight state-of-the-art (SOTA) methods and setting new benchmarks for SITS-based semantic segmentation.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Temporal and Spatial–Spectral Features With Satellite Image Time Series: TAS2B-Net for Crop Semantic Segmentation\",\"authors\":\"Xiaohan Luo;Hangyu Dai;Vladimir Lysenko;Jinglu Tan;Ya Guo\",\"doi\":\"10.1109/LGRS.2025.3603294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation based on satellite image time series (SITS) is fundamental to a wide range of geospatial applications, including land cover mapping and urban development analysis. By integrating crop phenological dynamics over time, SITS provides richer spatiotemporal information than static satellite imagery. However, existing models fail to effectively process the temporal and spatial–spectral dimensions of SITS independently, leading to reduced segmentation accuracy. In this letter, we propose a temporal aggregation spatial–spectral bridge network (TAS2B-Net), a novel architecture designed to extract fine-grained crop features from SITS. The network consists of two key components: the pixel-aware grouping temporal integrator (PGTI), which captures temporal dependencies within pixel groups, and the edge-aware contextual fusion head (ECFH), which enhances spatial boundary and global structural representation. Additionally, we introduce a lightweight multiscale spectral decoder (LMSD) to aggregate contextual information across multiple spectral scales, further improving feature learning for semantic segmentation. Extensive experiments on the panoptic agricultural satellite time series (PASTIS) and MTLCC datasets show that the proposed network achieves mIoU scores of 68.91% and 84.59%, respectively, outperforming eight state-of-the-art (SOTA) methods and setting new benchmarks for SITS-based semantic segmentation.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11142812/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11142812/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于卫星图像时间序列(sit)的语义分割是广泛的地理空间应用的基础,包括土地覆盖制图和城市发展分析。通过整合作物物候动态,sit提供了比静态卫星图像更丰富的时空信息。然而,现有模型不能有效地独立处理sit的时空光谱维度,导致分割精度降低。在这封信中,我们提出了一个时间聚合空间光谱桥网络(TAS2B-Net),这是一个旨在从sit中提取细粒度作物特征的新架构。该网络由两个关键组件组成:像素感知分组时间积分器(PGTI)和边缘感知上下文融合头(ECFH),前者捕获像素组内的时间依赖性,后者增强空间边界和全局结构表示。此外,我们引入了一个轻量级的多尺度光谱解码器(LMSD)来聚合跨多个光谱尺度的上下文信息,进一步改进语义分割的特征学习。在panoptic农业卫星时间序列(PASTIS)和MTLCC数据集上的大量实验表明,该网络的mIoU得分分别为68.91%和84.59%,优于8种最先进的(SOTA)方法,为基于sits的语义分割设定了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging Temporal and Spatial–Spectral Features With Satellite Image Time Series: TAS2B-Net for Crop Semantic Segmentation
Semantic segmentation based on satellite image time series (SITS) is fundamental to a wide range of geospatial applications, including land cover mapping and urban development analysis. By integrating crop phenological dynamics over time, SITS provides richer spatiotemporal information than static satellite imagery. However, existing models fail to effectively process the temporal and spatial–spectral dimensions of SITS independently, leading to reduced segmentation accuracy. In this letter, we propose a temporal aggregation spatial–spectral bridge network (TAS2B-Net), a novel architecture designed to extract fine-grained crop features from SITS. The network consists of two key components: the pixel-aware grouping temporal integrator (PGTI), which captures temporal dependencies within pixel groups, and the edge-aware contextual fusion head (ECFH), which enhances spatial boundary and global structural representation. Additionally, we introduce a lightweight multiscale spectral decoder (LMSD) to aggregate contextual information across multiple spectral scales, further improving feature learning for semantic segmentation. Extensive experiments on the panoptic agricultural satellite time series (PASTIS) and MTLCC datasets show that the proposed network achieves mIoU scores of 68.91% and 84.59%, respectively, outperforming eight state-of-the-art (SOTA) methods and setting new benchmarks for SITS-based semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信