高性能锂离子电池用富镍阴极体-表面协同改性研究

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Mengyao Xu, Chengxin Zhu, Jinkai Qiu, Cheng Lian, Jingkun Li, Haiping Su* and Honglai Liu, 
{"title":"高性能锂离子电池用富镍阴极体-表面协同改性研究","authors":"Mengyao Xu,&nbsp;Chengxin Zhu,&nbsp;Jinkai Qiu,&nbsp;Cheng Lian,&nbsp;Jingkun Li,&nbsp;Haiping Su* and Honglai Liu,&nbsp;","doi":"10.1021/acsaem.5c01676","DOIUrl":null,"url":null,"abstract":"<p >Ni-rich layered cathodes are key materials for next-generation lithium-ion batteries (LIBs) aiming for a higher energy density and lower cost. However, their bulk and interface structural instability significantly impair their electrochemical performance, hindering their widespread application. Herein, we report a bulk-to-surface modification strategy for Ni-rich cathodes by Ti doping and Gd<sub>2</sub>O<sub>3</sub> surface coating (NCMT@Gd<sub>2</sub>O<sub>3</sub>). In this work, Ti doping and Gd<sub>2</sub>O<sub>3</sub> coating synergistically suppress cation mixing, lattice oxygen loss, and surface side reactions, thereby enhancing the structural and electrochemical stability, particularly under high-voltage operation (≥4.5 V). As a result, the NCMT@Gd<sub>2</sub>O<sub>3</sub> cathode demonstrates excellent electrochemical performance with a high discharge capacity of 194.14 mAh g<sup>–1</sup> and a high capacity retention ratio of 89.69% after 100 cycles (1C, cutoff voltage of 4.5 V). This work paves the way for the development of next-generation high-energy-density LIBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 17","pages":"12673–12683"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Bulk-to-Surface Modification of Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries\",\"authors\":\"Mengyao Xu,&nbsp;Chengxin Zhu,&nbsp;Jinkai Qiu,&nbsp;Cheng Lian,&nbsp;Jingkun Li,&nbsp;Haiping Su* and Honglai Liu,&nbsp;\",\"doi\":\"10.1021/acsaem.5c01676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ni-rich layered cathodes are key materials for next-generation lithium-ion batteries (LIBs) aiming for a higher energy density and lower cost. However, their bulk and interface structural instability significantly impair their electrochemical performance, hindering their widespread application. Herein, we report a bulk-to-surface modification strategy for Ni-rich cathodes by Ti doping and Gd<sub>2</sub>O<sub>3</sub> surface coating (NCMT@Gd<sub>2</sub>O<sub>3</sub>). In this work, Ti doping and Gd<sub>2</sub>O<sub>3</sub> coating synergistically suppress cation mixing, lattice oxygen loss, and surface side reactions, thereby enhancing the structural and electrochemical stability, particularly under high-voltage operation (≥4.5 V). As a result, the NCMT@Gd<sub>2</sub>O<sub>3</sub> cathode demonstrates excellent electrochemical performance with a high discharge capacity of 194.14 mAh g<sup>–1</sup> and a high capacity retention ratio of 89.69% after 100 cycles (1C, cutoff voltage of 4.5 V). This work paves the way for the development of next-generation high-energy-density LIBs.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 17\",\"pages\":\"12673–12683\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c01676\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01676","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

富镍层状阴极是下一代锂离子电池(LIBs)的关键材料,具有更高的能量密度和更低的成本。然而,它们的体积和界面结构不稳定严重影响了它们的电化学性能,阻碍了它们的广泛应用。在此,我们报告了一种通过Ti掺杂和Gd2O3表面涂层对富镍阴极进行体-表面改性的策略(NCMT@Gd2O3)。在这项工作中,Ti掺杂和Gd2O3涂层协同抑制阳离子混合,晶格氧损失和表面副反应,从而提高结构和电化学稳定性,特别是在高压下(≥4.5 V)。结果表明,NCMT@Gd2O3阴极具有优异的电化学性能,放电容量高达194.14 mAh g-1,循环100次(1C,截止电压为4.5 V)后容量保持率高达89.69%。这项工作为下一代高能量密度lib的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic Bulk-to-Surface Modification of Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries

Synergistic Bulk-to-Surface Modification of Ni-Rich Cathodes for High-Performance Lithium-Ion Batteries

Ni-rich layered cathodes are key materials for next-generation lithium-ion batteries (LIBs) aiming for a higher energy density and lower cost. However, their bulk and interface structural instability significantly impair their electrochemical performance, hindering their widespread application. Herein, we report a bulk-to-surface modification strategy for Ni-rich cathodes by Ti doping and Gd2O3 surface coating (NCMT@Gd2O3). In this work, Ti doping and Gd2O3 coating synergistically suppress cation mixing, lattice oxygen loss, and surface side reactions, thereby enhancing the structural and electrochemical stability, particularly under high-voltage operation (≥4.5 V). As a result, the NCMT@Gd2O3 cathode demonstrates excellent electrochemical performance with a high discharge capacity of 194.14 mAh g–1 and a high capacity retention ratio of 89.69% after 100 cycles (1C, cutoff voltage of 4.5 V). This work paves the way for the development of next-generation high-energy-density LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信