{"title":"从家谱的角度看幻影上位。","authors":"Anastasia Ignatieva, Lino A F Ferreira","doi":"10.1093/genetics/iyaf184","DOIUrl":null,"url":null,"abstract":"<p><p>Phantom epistasis arises when, in the course of testing for gene-by-gene interactions, the omission of a causal variant with a purely additive effect on the phenotype causes the spurious inference of a significant interaction between two SNPs. This is more likely to arise when the two SNPs are in relatively close proximity, so while true epistasis between nearby variants could be commonplace, in practice there is no reliable way of telling apart true epistatic signals from false positives. By considering the causes of phantom epistasis from a genealogy-based perspective, we leverage the rich information contained within reconstructed genealogies (in the form of ancestral recombination graphs) to address this problem. We propose a novel method for explicitly quantifying the genealogical evidence that a given pairwise interaction is the result of phantom epistasis, which can be applied to pairs of SNPs regardless of the genetic distance between them. Our method uses only publicly available data and so does not require access to the phenotypes and genotypes used for detecting interactions. Using simulations, we show that the method has excellent performance at even low genetic distances (around 0.5cM), and demonstrate its power to detect phantom epistasis using real data from previous studies. This opens up the exciting possibility of distinguishing spurious interactions in cis from those reflecting real biological effects.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phantom epistasis through the lens of genealogies.\",\"authors\":\"Anastasia Ignatieva, Lino A F Ferreira\",\"doi\":\"10.1093/genetics/iyaf184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phantom epistasis arises when, in the course of testing for gene-by-gene interactions, the omission of a causal variant with a purely additive effect on the phenotype causes the spurious inference of a significant interaction between two SNPs. This is more likely to arise when the two SNPs are in relatively close proximity, so while true epistasis between nearby variants could be commonplace, in practice there is no reliable way of telling apart true epistatic signals from false positives. By considering the causes of phantom epistasis from a genealogy-based perspective, we leverage the rich information contained within reconstructed genealogies (in the form of ancestral recombination graphs) to address this problem. We propose a novel method for explicitly quantifying the genealogical evidence that a given pairwise interaction is the result of phantom epistasis, which can be applied to pairs of SNPs regardless of the genetic distance between them. Our method uses only publicly available data and so does not require access to the phenotypes and genotypes used for detecting interactions. Using simulations, we show that the method has excellent performance at even low genetic distances (around 0.5cM), and demonstrate its power to detect phantom epistasis using real data from previous studies. This opens up the exciting possibility of distinguishing spurious interactions in cis from those reflecting real biological effects.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf184\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf184","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Phantom epistasis through the lens of genealogies.
Phantom epistasis arises when, in the course of testing for gene-by-gene interactions, the omission of a causal variant with a purely additive effect on the phenotype causes the spurious inference of a significant interaction between two SNPs. This is more likely to arise when the two SNPs are in relatively close proximity, so while true epistasis between nearby variants could be commonplace, in practice there is no reliable way of telling apart true epistatic signals from false positives. By considering the causes of phantom epistasis from a genealogy-based perspective, we leverage the rich information contained within reconstructed genealogies (in the form of ancestral recombination graphs) to address this problem. We propose a novel method for explicitly quantifying the genealogical evidence that a given pairwise interaction is the result of phantom epistasis, which can be applied to pairs of SNPs regardless of the genetic distance between them. Our method uses only publicly available data and so does not require access to the phenotypes and genotypes used for detecting interactions. Using simulations, we show that the method has excellent performance at even low genetic distances (around 0.5cM), and demonstrate its power to detect phantom epistasis using real data from previous studies. This opens up the exciting possibility of distinguishing spurious interactions in cis from those reflecting real biological effects.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.