结构蛋白质组学的研究现状和未来发展方向。

IF 5.5 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lotta J Happonen, Markku Varjosalo
{"title":"结构蛋白质组学的研究现状和未来发展方向。","authors":"Lotta J Happonen, Markku Varjosalo","doi":"10.1016/j.mcpro.2025.101065","DOIUrl":null,"url":null,"abstract":"<p><p>Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale. Integration with electron cryo-microscopy (cryo-EM), cryo-electron tomography (cryo-ET), nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and small-angle X-ray/neutron scattering (SAXS/SANS) methods has further driven the field of integrative structural biology. These methods, in conjunction with AI-driven predictive models such as AlphaFold and RoseTTAFold, enable the high-resolution modeling of protein complexes and dynamic assemblies, bridging the gap between static structures and real-time conformational changes. This review explores the current state-of-the-art in structural proteomics, with a focus on methodological advances and the integration of XL-MS, HDX-MS, and LiP-MS with methods in structural biology. We further discuss application of structural proteomics in deciphering disease mechanisms, identifying therapeutic targets, and guiding drug discovery, with these techniques poised to revolutionize precision medicine. Future directions emphasize fully integrative, multimodal approaches that unify experimental and computational paradigms, fostering a holistic understanding of the human proteome.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101065"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State-of-the-Art and Future Directions in Structural Proteomics.\",\"authors\":\"Lotta J Happonen, Markku Varjosalo\",\"doi\":\"10.1016/j.mcpro.2025.101065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale. Integration with electron cryo-microscopy (cryo-EM), cryo-electron tomography (cryo-ET), nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and small-angle X-ray/neutron scattering (SAXS/SANS) methods has further driven the field of integrative structural biology. These methods, in conjunction with AI-driven predictive models such as AlphaFold and RoseTTAFold, enable the high-resolution modeling of protein complexes and dynamic assemblies, bridging the gap between static structures and real-time conformational changes. This review explores the current state-of-the-art in structural proteomics, with a focus on methodological advances and the integration of XL-MS, HDX-MS, and LiP-MS with methods in structural biology. We further discuss application of structural proteomics in deciphering disease mechanisms, identifying therapeutic targets, and guiding drug discovery, with these techniques poised to revolutionize precision medicine. Future directions emphasize fully integrative, multimodal approaches that unify experimental and computational paradigms, fostering a holistic understanding of the human proteome.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"101065\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.101065\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101065","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于先进的实验方法和计算创新的融合,结构蛋白质组学经历了一次深刻的变革。包括交联质谱(XL-MS)、氢-氘交换质谱(HDX-MS)和有限蛋白水解质谱(LiP-MS)在内的尖端质谱(MS)方法,现在可以前所未有地深入了解蛋白质拓扑结构、构象动力学和蛋白质-蛋白质相互作用。这些方法,辅以亲和纯化(AP)、共免疫沉淀(co-IP)、接近标记(PL)和空间蛋白质组学技术,扩大了我们在系统范围内表征结构蛋白质组的能力。与电子冷冻显微镜(cro - em)、冷冻电子断层扫描(cro - et)、核磁共振(NMR)光谱学、x射线晶体学和小角度x射线/中子散射(SAXS/SANS)方法的结合进一步推动了综合结构生物学领域的发展。这些方法与人工智能驱动的预测模型(如AlphaFold和RoseTTAFold)相结合,可以实现蛋白质复合物和动态组件的高分辨率建模,弥合静态结构和实时构象变化之间的差距。本文综述了结构蛋白质组学研究的最新进展,重点介绍了结构生物学方法与xml - ms、HDX-MS和LiP-MS的结合。我们进一步讨论了结构蛋白质组学在破译疾病机制,确定治疗靶点和指导药物发现方面的应用,这些技术有望彻底改变精准医学。未来的方向强调完全整合,多模式的方法,统一实验和计算范式,促进对人类蛋白质组的整体理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-of-the-Art and Future Directions in Structural Proteomics.

Structural proteomics has undergone a profound transformation, driven by the convergence of advanced experimental methodologies and computational innovations. Cutting-edge mass spectrometry (MS)-based approaches, including cross-linking MS (XL-MS), hydrogen-deuterium exchange MS (HDX-MS), and limited proteolysis MS (LiP-MS), now enable unprecedented insights into protein topology, conformational dynamics, and protein-protein interactions. These methods, complemented by affinity purification (AP), co-immunoprecipitation (co-IP), proximity labeling (PL), and spatial proteomics techniques, have expanded our ability to characterize the structural proteome at a systems-wide scale. Integration with electron cryo-microscopy (cryo-EM), cryo-electron tomography (cryo-ET), nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and small-angle X-ray/neutron scattering (SAXS/SANS) methods has further driven the field of integrative structural biology. These methods, in conjunction with AI-driven predictive models such as AlphaFold and RoseTTAFold, enable the high-resolution modeling of protein complexes and dynamic assemblies, bridging the gap between static structures and real-time conformational changes. This review explores the current state-of-the-art in structural proteomics, with a focus on methodological advances and the integration of XL-MS, HDX-MS, and LiP-MS with methods in structural biology. We further discuss application of structural proteomics in deciphering disease mechanisms, identifying therapeutic targets, and guiding drug discovery, with these techniques poised to revolutionize precision medicine. Future directions emphasize fully integrative, multimodal approaches that unify experimental and computational paradigms, fostering a holistic understanding of the human proteome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信