在日常临床实践中分子数据有限的情况下,IPSS-M、IPSS-R和AIPSS-MDS预测预后的比较

IF 2.4 3区 医学 Q2 HEMATOLOGY
Felicitas Schulz, Carolin Kellersmann, Beate Betz, Barbara Hildebrandt, Annika Kasprzak, Corinna Strupp, Felicitas Thol, Michael Heuser, Christina Ganster, Fabian Beier, Katja Sockel, Wolf-Karsten Hofmann, Andrea Kuendgen, Paul Jaeger, Michael Pfeilstoecker, Michael Lauseker, Sascha Dietrich, Nobert Gattermann, Kathrin Nachtkamp, Detlef Haase, Ulrich Germing
{"title":"在日常临床实践中分子数据有限的情况下,IPSS-M、IPSS-R和AIPSS-MDS预测预后的比较","authors":"Felicitas Schulz, Carolin Kellersmann, Beate Betz, Barbara Hildebrandt, Annika Kasprzak, Corinna Strupp, Felicitas Thol, Michael Heuser, Christina Ganster, Fabian Beier, Katja Sockel, Wolf-Karsten Hofmann, Andrea Kuendgen, Paul Jaeger, Michael Pfeilstoecker, Michael Lauseker, Sascha Dietrich, Nobert Gattermann, Kathrin Nachtkamp, Detlef Haase, Ulrich Germing","doi":"10.1007/s00277-025-06570-0","DOIUrl":null,"url":null,"abstract":"<p><p>The IPSS-M was developed to revolutionize the prediction of MDS patients' survival by incorporating molecular data. To compensate for lack of access to molecular analyses, the AIPSS-MDS, a supervised machine learning algorithm exclusively based on clinical and cytogenetic data, was developed by the Spanish MDS Group. We used data of the Düsseldorf MDS Registry and included 207 of more than 8500 registry patients whose IPSS-M-requested complete molecular data were known to compare and validate prognostication regarding OS and LFS of the IPSS-M, IPSS-R and AIPSS-MDS. All three tools reliably prognosticated median OS of patients even in a comparatively small patient cohort. The IPSS-M provided the most accurate prediction of median OS while the frequent lack of molecular data persists as an obstacle in daily clinical practice. Due to these circumstances, the IPSS-R remains the prognostication tool with the widest applicability. Based on our data, prognostication using the AIPSS-MDS is also feasible but less precise.</p>","PeriodicalId":8068,"journal":{"name":"Annals of Hematology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of prognostication by IPSS-M, IPSS-R and AIPSS-MDS in the context of limited availability of molecular data in daily clinical practice.\",\"authors\":\"Felicitas Schulz, Carolin Kellersmann, Beate Betz, Barbara Hildebrandt, Annika Kasprzak, Corinna Strupp, Felicitas Thol, Michael Heuser, Christina Ganster, Fabian Beier, Katja Sockel, Wolf-Karsten Hofmann, Andrea Kuendgen, Paul Jaeger, Michael Pfeilstoecker, Michael Lauseker, Sascha Dietrich, Nobert Gattermann, Kathrin Nachtkamp, Detlef Haase, Ulrich Germing\",\"doi\":\"10.1007/s00277-025-06570-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The IPSS-M was developed to revolutionize the prediction of MDS patients' survival by incorporating molecular data. To compensate for lack of access to molecular analyses, the AIPSS-MDS, a supervised machine learning algorithm exclusively based on clinical and cytogenetic data, was developed by the Spanish MDS Group. We used data of the Düsseldorf MDS Registry and included 207 of more than 8500 registry patients whose IPSS-M-requested complete molecular data were known to compare and validate prognostication regarding OS and LFS of the IPSS-M, IPSS-R and AIPSS-MDS. All three tools reliably prognosticated median OS of patients even in a comparatively small patient cohort. The IPSS-M provided the most accurate prediction of median OS while the frequent lack of molecular data persists as an obstacle in daily clinical practice. Due to these circumstances, the IPSS-R remains the prognostication tool with the widest applicability. Based on our data, prognostication using the AIPSS-MDS is also feasible but less precise.</p>\",\"PeriodicalId\":8068,\"journal\":{\"name\":\"Annals of Hematology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00277-025-06570-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00277-025-06570-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

IPSS-M的开发是为了通过结合分子数据来彻底改变MDS患者的生存预测。为了弥补缺乏获得分子分析的机会,AIPSS-MDS是一种完全基于临床和细胞遗传学数据的监督机器学习算法,由西班牙MDS集团开发。我们使用了d sseldorf MDS Registry的数据,并纳入了8500多名已知IPSS-M要求完整分子数据的注册患者中的207名,以比较和验证IPSS-M、IPSS-R和AIPSS-MDS的OS和LFS的预后。即使在相对较小的患者队列中,这三种工具也能可靠地预测患者的中位总生存期。IPSS-M提供了最准确的中位OS预测,而分子数据的频繁缺乏仍然是日常临床实践中的障碍。由于这些情况,IPSS-R仍然是最广泛适用的预测工具。根据我们的数据,使用AIPSS-MDS进行预测也是可行的,但不太精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of prognostication by IPSS-M, IPSS-R and AIPSS-MDS in the context of limited availability of molecular data in daily clinical practice.

The IPSS-M was developed to revolutionize the prediction of MDS patients' survival by incorporating molecular data. To compensate for lack of access to molecular analyses, the AIPSS-MDS, a supervised machine learning algorithm exclusively based on clinical and cytogenetic data, was developed by the Spanish MDS Group. We used data of the Düsseldorf MDS Registry and included 207 of more than 8500 registry patients whose IPSS-M-requested complete molecular data were known to compare and validate prognostication regarding OS and LFS of the IPSS-M, IPSS-R and AIPSS-MDS. All three tools reliably prognosticated median OS of patients even in a comparatively small patient cohort. The IPSS-M provided the most accurate prediction of median OS while the frequent lack of molecular data persists as an obstacle in daily clinical practice. Due to these circumstances, the IPSS-R remains the prognostication tool with the widest applicability. Based on our data, prognostication using the AIPSS-MDS is also feasible but less precise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Hematology
Annals of Hematology 医学-血液学
CiteScore
5.60
自引率
2.90%
发文量
304
审稿时长
2 months
期刊介绍: Annals of Hematology covers the whole spectrum of clinical and experimental hematology, hemostaseology, blood transfusion, and related aspects of medical oncology, including diagnosis and treatment of leukemias, lymphatic neoplasias and solid tumors, and transplantation of hematopoietic stem cells. Coverage includes general aspects of oncology, molecular biology and immunology as pertinent to problems of human blood disease. The journal is associated with the German Society for Hematology and Medical Oncology, and the Austrian Society for Hematology and Oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信