Naoki Yamamoto*, Keisuke Yuzu, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Daisuke Koyama and Eri Chatani,
{"title":"纤维蛋白原靶向单体和低聚物有效抑制淀粉样蛋白β 1-42的形成和细胞毒性。","authors":"Naoki Yamamoto*, Keisuke Yuzu, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Daisuke Koyama and Eri Chatani, ","doi":"10.1021/acschemneuro.5c00562","DOIUrl":null,"url":null,"abstract":"<p >The development of drugs for Alzheimer’s disease, which accounts for over half of all dementia cases, remains challenging. Amyloid β 1-42 (Aβ42) is widely recognized for its deposition in the brains of patients with Alzheimer’s disease. Furthermore, Aβ42-induced cell toxicity likely plays a role in disease onset. Molecular species present in the early stages, such as monomers and oligomers, are appropriate therapeutic targets for suppressing amyloid fibril formation and cell toxicity. In this study, we investigated the effects of bovine fibrinogen (bFg) and human fibrinogen (hFg) since these molecules have been known to exhibit chaperone-like activities. Our findings indicate that bFg exerts a strong inhibitory effect on amyloid fibril formation. Dot blot assays, analytical ultracentrifugation (AUC), and atomic force microscopy (AFM) suggest that bFg interacts with both Aβ42 monomers and oligomers. In contrast, human fibrinogen (hFg), which interacts only with oligomers, exhibits a weaker inhibitory effect on amyloid fibril formation. Moreover, bFg significantly rescued cells from Aβ42-induced toxicity, whereas hFg provided only partial protection. These findings underscore the potential of molecules targeting early stage Aβ42 species as promising candidates for Alzheimer’s disease treatment.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"16 18","pages":"3623–3630"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acschemneuro.5c00562","citationCount":"0","resultStr":"{\"title\":\"Targeting Both Monomer and Oligomer with Fibrinogen Efficiently Suppresses Amyloid Fibril Formation and Cell Toxicity of Amyloid β 1-42\",\"authors\":\"Naoki Yamamoto*, Keisuke Yuzu, Ken Morishima, Rintaro Inoue, Masaaki Sugiyama, Daisuke Koyama and Eri Chatani, \",\"doi\":\"10.1021/acschemneuro.5c00562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of drugs for Alzheimer’s disease, which accounts for over half of all dementia cases, remains challenging. Amyloid β 1-42 (Aβ42) is widely recognized for its deposition in the brains of patients with Alzheimer’s disease. Furthermore, Aβ42-induced cell toxicity likely plays a role in disease onset. Molecular species present in the early stages, such as monomers and oligomers, are appropriate therapeutic targets for suppressing amyloid fibril formation and cell toxicity. In this study, we investigated the effects of bovine fibrinogen (bFg) and human fibrinogen (hFg) since these molecules have been known to exhibit chaperone-like activities. Our findings indicate that bFg exerts a strong inhibitory effect on amyloid fibril formation. Dot blot assays, analytical ultracentrifugation (AUC), and atomic force microscopy (AFM) suggest that bFg interacts with both Aβ42 monomers and oligomers. In contrast, human fibrinogen (hFg), which interacts only with oligomers, exhibits a weaker inhibitory effect on amyloid fibril formation. Moreover, bFg significantly rescued cells from Aβ42-induced toxicity, whereas hFg provided only partial protection. These findings underscore the potential of molecules targeting early stage Aβ42 species as promising candidates for Alzheimer’s disease treatment.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"16 18\",\"pages\":\"3623–3630\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acschemneuro.5c00562\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00562\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.5c00562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting Both Monomer and Oligomer with Fibrinogen Efficiently Suppresses Amyloid Fibril Formation and Cell Toxicity of Amyloid β 1-42
The development of drugs for Alzheimer’s disease, which accounts for over half of all dementia cases, remains challenging. Amyloid β 1-42 (Aβ42) is widely recognized for its deposition in the brains of patients with Alzheimer’s disease. Furthermore, Aβ42-induced cell toxicity likely plays a role in disease onset. Molecular species present in the early stages, such as monomers and oligomers, are appropriate therapeutic targets for suppressing amyloid fibril formation and cell toxicity. In this study, we investigated the effects of bovine fibrinogen (bFg) and human fibrinogen (hFg) since these molecules have been known to exhibit chaperone-like activities. Our findings indicate that bFg exerts a strong inhibitory effect on amyloid fibril formation. Dot blot assays, analytical ultracentrifugation (AUC), and atomic force microscopy (AFM) suggest that bFg interacts with both Aβ42 monomers and oligomers. In contrast, human fibrinogen (hFg), which interacts only with oligomers, exhibits a weaker inhibitory effect on amyloid fibril formation. Moreover, bFg significantly rescued cells from Aβ42-induced toxicity, whereas hFg provided only partial protection. These findings underscore the potential of molecules targeting early stage Aβ42 species as promising candidates for Alzheimer’s disease treatment.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research