{"title":"用密度泛函理论评价Sn同位素的电荷半径和自旋轨道效应","authors":"Hossein Sadeghi, Mahdieh Ghafouri","doi":"10.1007/s13538-025-01895-7","DOIUrl":null,"url":null,"abstract":"<div><p>The energy density functional (EDF) theory is an essential microscopic approach used in theoretical nuclear physics to study the nuclear structure of heavy nuclei on a large scale. In this research, density functional theory (DFT) solvers were utilized to solve self-consistent equations for both spherical and deformed shapes. The effects of spin–orbit density, energy, and charge radius of Sn isotopes were analyzed using the Skyrme Hartree Fock (SHF) and Skyrme Hartree Fock Bogolyubov (SHFB) methods, which take into account pairing interactions that vary with density. The calculated radius for both spherical and deformed states was compared to experimental data to evaluate the influence of deformation. These comparisons are usually performed using the Hartree Fock Bogolyubov (HFB) or the Hartree Fock BCS (HFBCS) method. The consistency of our findings with those obtained from the spherical RMF(Relativistic Mean-Field)-PC code strengthens the reliability of our conclusions. These results are significant as they allow for an accurate assessment of the force distribution within uniform spherical Nuclei.</p></div>","PeriodicalId":499,"journal":{"name":"Brazilian Journal of Physics","volume":"55 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Charge Radius and Spin–Orbit Effects in Sn Isotopes Using Density Functional Theory\",\"authors\":\"Hossein Sadeghi, Mahdieh Ghafouri\",\"doi\":\"10.1007/s13538-025-01895-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy density functional (EDF) theory is an essential microscopic approach used in theoretical nuclear physics to study the nuclear structure of heavy nuclei on a large scale. In this research, density functional theory (DFT) solvers were utilized to solve self-consistent equations for both spherical and deformed shapes. The effects of spin–orbit density, energy, and charge radius of Sn isotopes were analyzed using the Skyrme Hartree Fock (SHF) and Skyrme Hartree Fock Bogolyubov (SHFB) methods, which take into account pairing interactions that vary with density. The calculated radius for both spherical and deformed states was compared to experimental data to evaluate the influence of deformation. These comparisons are usually performed using the Hartree Fock Bogolyubov (HFB) or the Hartree Fock BCS (HFBCS) method. The consistency of our findings with those obtained from the spherical RMF(Relativistic Mean-Field)-PC code strengthens the reliability of our conclusions. These results are significant as they allow for an accurate assessment of the force distribution within uniform spherical Nuclei.</p></div>\",\"PeriodicalId\":499,\"journal\":{\"name\":\"Brazilian Journal of Physics\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13538-025-01895-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s13538-025-01895-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating Charge Radius and Spin–Orbit Effects in Sn Isotopes Using Density Functional Theory
The energy density functional (EDF) theory is an essential microscopic approach used in theoretical nuclear physics to study the nuclear structure of heavy nuclei on a large scale. In this research, density functional theory (DFT) solvers were utilized to solve self-consistent equations for both spherical and deformed shapes. The effects of spin–orbit density, energy, and charge radius of Sn isotopes were analyzed using the Skyrme Hartree Fock (SHF) and Skyrme Hartree Fock Bogolyubov (SHFB) methods, which take into account pairing interactions that vary with density. The calculated radius for both spherical and deformed states was compared to experimental data to evaluate the influence of deformation. These comparisons are usually performed using the Hartree Fock Bogolyubov (HFB) or the Hartree Fock BCS (HFBCS) method. The consistency of our findings with those obtained from the spherical RMF(Relativistic Mean-Field)-PC code strengthens the reliability of our conclusions. These results are significant as they allow for an accurate assessment of the force distribution within uniform spherical Nuclei.
期刊介绍:
The Brazilian Journal of Physics is a peer-reviewed international journal published by the Brazilian Physical Society (SBF). The journal publishes new and original research results from all areas of physics, obtained in Brazil and from anywhere else in the world. Contents include theoretical, practical and experimental papers as well as high-quality review papers. Submissions should follow the generally accepted structure for journal articles with basic elements: title, abstract, introduction, results, conclusions, and references.