Leizhen Wang , Peibo Duan , Zhengbing He , Cheng Lyu , Xin Chen , Nan Zheng , Li Yao , Zhenliang Ma
{"title":"日常路线选择的代理大型语言模型","authors":"Leizhen Wang , Peibo Duan , Zhengbing He , Cheng Lyu , Xin Chen , Nan Zheng , Li Yao , Zhenliang Ma","doi":"10.1016/j.trc.2025.105307","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding travelers’ route choices can help policymakers devise optimal operational and planning strategies for both normal and abnormal circumstances. However, existing choice modeling methods often rely on predefined assumptions and struggle to capture the dynamic and adaptive nature of travel behavior. Recently, Large Language Models (LLMs) have emerged as a promising alternative, demonstrating remarkable ability to replicate human-like behaviors across various fields. Despite this potential, their capacity to accurately simulate human route choice behavior in transportation contexts remains doubtful. To satisfy this curiosity, this paper investigates the potential of LLMs for route choice modeling by introducing an LLM-empowered agent, “LLMTraveler.” This agent integrates an LLM as its core, equipped with a memory system that learns from past experiences and makes decisions by balancing retrieved data and personality traits. The study systematically evaluates the LLMTraveler’s ability to replicate human-like decision-making through two stages of day-to-day (DTD) congestion games: (1) analyzing its route-switching behavior in single origin–destination (OD) pair scenarios, where it demonstrates patterns that align with laboratory data but cannot be fully captured by traditional models, and (2) testing its capacity to model adaptive learning behaviors in multi-OD scenarios on the Ortuzar and Willumsen (OW) network, producing results comparable to Multinomial Logit (MNL) and Reinforcement Learning (RL) models. Additionally, the study assesses lightweight, open-source LLMs, highlighting their effectiveness in route choice simulation and their potential as cost-effective alternatives to more advanced closed-source models. These experiments demonstrate that the framework can partially replicate human-like decision-making in route choice while providing natural language explanations for its decisions. This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network. The code for this paper is open-source and available at: <span><span>https://github.com/georgewanglz2019/LLMTraveler</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"180 ","pages":"Article 105307"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agentic Large Language Models for day-to-day route choices\",\"authors\":\"Leizhen Wang , Peibo Duan , Zhengbing He , Cheng Lyu , Xin Chen , Nan Zheng , Li Yao , Zhenliang Ma\",\"doi\":\"10.1016/j.trc.2025.105307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding travelers’ route choices can help policymakers devise optimal operational and planning strategies for both normal and abnormal circumstances. However, existing choice modeling methods often rely on predefined assumptions and struggle to capture the dynamic and adaptive nature of travel behavior. Recently, Large Language Models (LLMs) have emerged as a promising alternative, demonstrating remarkable ability to replicate human-like behaviors across various fields. Despite this potential, their capacity to accurately simulate human route choice behavior in transportation contexts remains doubtful. To satisfy this curiosity, this paper investigates the potential of LLMs for route choice modeling by introducing an LLM-empowered agent, “LLMTraveler.” This agent integrates an LLM as its core, equipped with a memory system that learns from past experiences and makes decisions by balancing retrieved data and personality traits. The study systematically evaluates the LLMTraveler’s ability to replicate human-like decision-making through two stages of day-to-day (DTD) congestion games: (1) analyzing its route-switching behavior in single origin–destination (OD) pair scenarios, where it demonstrates patterns that align with laboratory data but cannot be fully captured by traditional models, and (2) testing its capacity to model adaptive learning behaviors in multi-OD scenarios on the Ortuzar and Willumsen (OW) network, producing results comparable to Multinomial Logit (MNL) and Reinforcement Learning (RL) models. Additionally, the study assesses lightweight, open-source LLMs, highlighting their effectiveness in route choice simulation and their potential as cost-effective alternatives to more advanced closed-source models. These experiments demonstrate that the framework can partially replicate human-like decision-making in route choice while providing natural language explanations for its decisions. This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network. The code for this paper is open-source and available at: <span><span>https://github.com/georgewanglz2019/LLMTraveler</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"180 \",\"pages\":\"Article 105307\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X25003110\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25003110","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Agentic Large Language Models for day-to-day route choices
Understanding travelers’ route choices can help policymakers devise optimal operational and planning strategies for both normal and abnormal circumstances. However, existing choice modeling methods often rely on predefined assumptions and struggle to capture the dynamic and adaptive nature of travel behavior. Recently, Large Language Models (LLMs) have emerged as a promising alternative, demonstrating remarkable ability to replicate human-like behaviors across various fields. Despite this potential, their capacity to accurately simulate human route choice behavior in transportation contexts remains doubtful. To satisfy this curiosity, this paper investigates the potential of LLMs for route choice modeling by introducing an LLM-empowered agent, “LLMTraveler.” This agent integrates an LLM as its core, equipped with a memory system that learns from past experiences and makes decisions by balancing retrieved data and personality traits. The study systematically evaluates the LLMTraveler’s ability to replicate human-like decision-making through two stages of day-to-day (DTD) congestion games: (1) analyzing its route-switching behavior in single origin–destination (OD) pair scenarios, where it demonstrates patterns that align with laboratory data but cannot be fully captured by traditional models, and (2) testing its capacity to model adaptive learning behaviors in multi-OD scenarios on the Ortuzar and Willumsen (OW) network, producing results comparable to Multinomial Logit (MNL) and Reinforcement Learning (RL) models. Additionally, the study assesses lightweight, open-source LLMs, highlighting their effectiveness in route choice simulation and their potential as cost-effective alternatives to more advanced closed-source models. These experiments demonstrate that the framework can partially replicate human-like decision-making in route choice while providing natural language explanations for its decisions. This capability offers valuable insights for transportation policymaking, such as simulating traveler responses to new policies or changes in the network. The code for this paper is open-source and available at: https://github.com/georgewanglz2019/LLMTraveler.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.