Ana C. Feltrin , Simon Divilov , Gregory E. Hilmas , Stefano Curtarolo , William G. Fahrenholtz
{"title":"(M,Hf,Ti,Zr)B2-(M,Hf,Ti,Zr)C陶瓷中V族和VI族金属的综合计算和实验研究","authors":"Ana C. Feltrin , Simon Divilov , Gregory E. Hilmas , Stefano Curtarolo , William G. Fahrenholtz","doi":"10.1016/j.jeurceramsoc.2025.117779","DOIUrl":null,"url":null,"abstract":"<div><div>Dual-phase compositionally complex ultra-high temperature ceramics were formulated by incorporating different Groups V and VI metals such as V, Nb, Ta, Cr, Mo, or W into a base composition containing the Group IV elements, Hf, Ti, and Zr. Metal distribution was predicted using first-principles-based thermodynamics simulations and compared with experimental results. Moreover, phase stability, microstructure, and mechanical properties were evaluated for all of the ceramics. Compositions containing Cr, V, Nb, or Ta formed dual-phase ceramics containing only one boride and one carbide phase, while compositions containing Mo or W developed an additional third phase. The experimental metal distribution trends generally aligned with thermodynamic predictions, except for compositions containing V, which showed unexpected segregation behavior that was influenced by complex interactions of the coexistence of boride and carbide structures. From the dual-phase ceramics, the composition containing V exhibited the highest hardness (HV<sub>1</sub> = 25.5 ± 0.6 GPa) combined with smaller grain sizes (0.99 ± 0.33 μm for the boride and 1.15 ± 0.31 μm for the carbide phases). Our findings provide insights into phase formation and elemental segregation and help the design of next-generation dual-phase UHTCs with tailored properties.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"46 2","pages":"Article 117779"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated computational and experimental investigation of Groups V and VI metals in (M,Hf,Ti,Zr)B2-(M,Hf,Ti,Zr)C ceramics\",\"authors\":\"Ana C. Feltrin , Simon Divilov , Gregory E. Hilmas , Stefano Curtarolo , William G. Fahrenholtz\",\"doi\":\"10.1016/j.jeurceramsoc.2025.117779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dual-phase compositionally complex ultra-high temperature ceramics were formulated by incorporating different Groups V and VI metals such as V, Nb, Ta, Cr, Mo, or W into a base composition containing the Group IV elements, Hf, Ti, and Zr. Metal distribution was predicted using first-principles-based thermodynamics simulations and compared with experimental results. Moreover, phase stability, microstructure, and mechanical properties were evaluated for all of the ceramics. Compositions containing Cr, V, Nb, or Ta formed dual-phase ceramics containing only one boride and one carbide phase, while compositions containing Mo or W developed an additional third phase. The experimental metal distribution trends generally aligned with thermodynamic predictions, except for compositions containing V, which showed unexpected segregation behavior that was influenced by complex interactions of the coexistence of boride and carbide structures. From the dual-phase ceramics, the composition containing V exhibited the highest hardness (HV<sub>1</sub> = 25.5 ± 0.6 GPa) combined with smaller grain sizes (0.99 ± 0.33 μm for the boride and 1.15 ± 0.31 μm for the carbide phases). Our findings provide insights into phase formation and elemental segregation and help the design of next-generation dual-phase UHTCs with tailored properties.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"46 2\",\"pages\":\"Article 117779\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221925006004\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925006004","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Integrated computational and experimental investigation of Groups V and VI metals in (M,Hf,Ti,Zr)B2-(M,Hf,Ti,Zr)C ceramics
Dual-phase compositionally complex ultra-high temperature ceramics were formulated by incorporating different Groups V and VI metals such as V, Nb, Ta, Cr, Mo, or W into a base composition containing the Group IV elements, Hf, Ti, and Zr. Metal distribution was predicted using first-principles-based thermodynamics simulations and compared with experimental results. Moreover, phase stability, microstructure, and mechanical properties were evaluated for all of the ceramics. Compositions containing Cr, V, Nb, or Ta formed dual-phase ceramics containing only one boride and one carbide phase, while compositions containing Mo or W developed an additional third phase. The experimental metal distribution trends generally aligned with thermodynamic predictions, except for compositions containing V, which showed unexpected segregation behavior that was influenced by complex interactions of the coexistence of boride and carbide structures. From the dual-phase ceramics, the composition containing V exhibited the highest hardness (HV1 = 25.5 ± 0.6 GPa) combined with smaller grain sizes (0.99 ± 0.33 μm for the boride and 1.15 ± 0.31 μm for the carbide phases). Our findings provide insights into phase formation and elemental segregation and help the design of next-generation dual-phase UHTCs with tailored properties.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.