Siddharth Gaur, R. Inkulu
求助PDF
{"title":"基于分治法的简单多边形路由预处理","authors":"Siddharth Gaur, R. Inkulu","doi":"10.1007/s10878-025-01345-9","DOIUrl":null,"url":null,"abstract":"<p>Given a simple polygon <i>P</i> defined with <i>n</i> vertices in the plane, we preprocess <i>P</i> and compute routing tables at every vertex of <i>P</i>. In the routing phase, a packet originating at any source vertex of <i>P</i> is routed to its destination vertex belonging to <i>P</i>. At every vertex <i>v</i> of <i>P</i> along the routing path, until the packet reaches its destination, the next hop is determined using the routing tables at <i>v</i> and the additional information (including the packet’s destination vertex label) in the packet. We show our routing scheme constructs routing tables in <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>n</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>&#x03F5;</mi></mfrac><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.615ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -1123.3 8719.1 1556.6\" width=\"20.251ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"763\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><use x=\"1222\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1822\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><use x=\"2281\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"3003\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(3782,0)\"><g transform=\"translate(342,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-31\" y=\"556\"></use><use transform=\"scale(0.707)\" x=\"131\" xlink:href=\"#MJMATHI-3F5\" y=\"-488\"></use></g></g><use x=\"4718\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use><use x=\"5176\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><g transform=\"translate(5802,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"6747\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(7348,0)\"><use x=\"0\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use><use transform=\"scale(0.707)\" x=\"648\" xlink:href=\"#MJMAIN-33\" y=\"816\"></use></g><use x=\"8260\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>n</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>ϵ</mi></mfrac><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle></math></span></span><script type=\"math/tex\">O\\big (n \\big (1+\\frac{1}{\\epsilon }\\big ) \\big (\\lg {n}\\big )^3\\big )</script></span> time and the routing tables at all the vertices of <i>P</i> together use <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>n</mi><mo>+</mo><mfrac><mi>n</mi><mi>&#x03F5;</mi></mfrac><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.615ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -1123.3 7372.3 1556.6\" width=\"17.123ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"763\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><use x=\"1222\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2044\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(2823,0)\"><g transform=\"translate(342,0)\"><rect height=\"60\" stroke=\"none\" width=\"544\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMATHI-6E\" y=\"564\"></use><use transform=\"scale(0.707)\" x=\"181\" xlink:href=\"#MJMATHI-3F5\" y=\"-488\"></use></g></g><use x=\"3830\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><g transform=\"translate(4455,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"5400\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(6001,0)\"><use x=\"0\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use><use transform=\"scale(0.707)\" x=\"648\" xlink:href=\"#MJMAIN-33\" y=\"816\"></use></g><use x=\"6913\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>n</mi><mo>+</mo><mfrac><mi>n</mi><mi>ϵ</mi></mfrac><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">(</mo></mrow></mstyle><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\"0\"><mrow><mo maxsize=\"1.2em\" minsize=\"1.2em\">)</mo></mrow></mstyle></math></span></span><script type=\"math/tex\">O\\big (n+\\frac{n}{\\epsilon }\\big (\\lg {n}\\big )^3\\big )</script></span> space. The multiplicative stretch factor of the routing path computed by our algorithm is upper bounded by <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo>+</mo><mi>&#x03F5;</mi><mo stretchy=\"false\">)</mo><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 4621.8 1125.3\" width=\"10.734ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"1112\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2112\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use><use x=\"2519\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(3075,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"4021\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo>+</mo><mi>ϵ</mi><mo stretchy=\"false\">)</mo><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow></math></span></span><script type=\"math/tex\">(2+\\epsilon )\\lg {n}</script></span>. Here, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>&#x03F5;</mi><mo>&gt;</mo><mn>0</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2241.1 823.4\" width=\"5.205ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use><use x=\"684\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1740\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span></span><script type=\"math/tex\">\\epsilon > 0</script></span> is an input parameter.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"128 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A divide-and-conquer based preprocessing for routing in a simple polygon\",\"authors\":\"Siddharth Gaur, R. Inkulu\",\"doi\":\"10.1007/s10878-025-01345-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a simple polygon <i>P</i> defined with <i>n</i> vertices in the plane, we preprocess <i>P</i> and compute routing tables at every vertex of <i>P</i>. In the routing phase, a packet originating at any source vertex of <i>P</i> is routed to its destination vertex belonging to <i>P</i>. At every vertex <i>v</i> of <i>P</i> along the routing path, until the packet reaches its destination, the next hop is determined using the routing tables at <i>v</i> and the additional information (including the packet’s destination vertex label) in the packet. We show our routing scheme constructs routing tables in <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>n</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>&#x03F5;</mi></mfrac><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.615ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -1123.3 8719.1 1556.6\\\" width=\\\"20.251ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4F\\\" y=\\\"0\\\"></use><use x=\\\"763\\\" xlink:href=\\\"#MJSZ1-28\\\" y=\\\"-1\\\"></use><use x=\\\"1222\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"1822\\\" xlink:href=\\\"#MJSZ1-28\\\" y=\\\"-1\\\"></use><use x=\\\"2281\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use x=\\\"3003\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3782,0)\\\"><g transform=\\\"translate(342,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"473\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"556\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"131\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"-488\\\"></use></g></g><use x=\\\"4718\\\" xlink:href=\\\"#MJSZ1-29\\\" y=\\\"-1\\\"></use><use x=\\\"5176\\\" xlink:href=\\\"#MJSZ1-28\\\" y=\\\"-1\\\"></use><g transform=\\\"translate(5802,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"6747\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><g transform=\\\"translate(7348,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJSZ1-29\\\" y=\\\"-1\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"648\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"816\\\"></use></g><use x=\\\"8260\\\" xlink:href=\\\"#MJSZ1-29\\\" y=\\\"-1\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>n</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mn>1</mn><mo>+</mo><mfrac><mn>1</mn><mi>ϵ</mi></mfrac><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle></math></span></span><script type=\\\"math/tex\\\">O\\\\big (n \\\\big (1+\\\\frac{1}{\\\\epsilon }\\\\big ) \\\\big (\\\\lg {n}\\\\big )^3\\\\big )</script></span> time and the routing tables at all the vertices of <i>P</i> together use <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>n</mi><mo>+</mo><mfrac><mi>n</mi><mi>&#x03F5;</mi></mfrac><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.615ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -1123.3 7372.3 1556.6\\\" width=\\\"17.123ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4F\\\" y=\\\"0\\\"></use><use x=\\\"763\\\" xlink:href=\\\"#MJSZ1-28\\\" y=\\\"-1\\\"></use><use x=\\\"1222\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"2044\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2823,0)\\\"><g transform=\\\"translate(342,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"544\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"564\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"181\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"-488\\\"></use></g></g><use x=\\\"3830\\\" xlink:href=\\\"#MJSZ1-28\\\" y=\\\"-1\\\"></use><g transform=\\\"translate(4455,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"5400\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><g transform=\\\"translate(6001,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJSZ1-29\\\" y=\\\"-1\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"648\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"816\\\"></use></g><use x=\\\"6913\\\" xlink:href=\\\"#MJSZ1-29\\\" y=\\\"-1\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>n</mi><mo>+</mo><mfrac><mi>n</mi><mi>ϵ</mi></mfrac><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">(</mo></mrow></mstyle><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow><msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle><mn>3</mn></msup><mstyle scriptlevel=\\\"0\\\"><mrow><mo maxsize=\\\"1.2em\\\" minsize=\\\"1.2em\\\">)</mo></mrow></mstyle></math></span></span><script type=\\\"math/tex\\\">O\\\\big (n+\\\\frac{n}{\\\\epsilon }\\\\big (\\\\lg {n}\\\\big )^3\\\\big )</script></span> space. The multiplicative stretch factor of the routing path computed by our algorithm is upper bounded by <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>+</mo><mi>&#x03F5;</mi><mo stretchy=\\\"false\\\">)</mo><mi>lg</mi><mo>&#x2061;</mo><mrow><mi>n</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 4621.8 1125.3\\\" width=\\\"10.734ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"1112\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2112\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"0\\\"></use><use x=\\\"2519\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3075,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"4021\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>+</mo><mi>ϵ</mi><mo stretchy=\\\"false\\\">)</mo><mi>lg</mi><mo></mo><mrow><mi>n</mi></mrow></math></span></span><script type=\\\"math/tex\\\">(2+\\\\epsilon )\\\\lg {n}</script></span>. Here, <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>&#x03F5;</mi><mo>&gt;</mo><mn>0</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 2241.1 823.4\\\" width=\\\"5.205ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"0\\\"></use><use x=\\\"684\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"1740\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span></span><script type=\\\"math/tex\\\">\\\\epsilon > 0</script></span> is an input parameter.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01345-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01345-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
引用
批量引用