分数色数与霍尔比

IF 1 2区 数学 Q1 MATHEMATICS
Raphael Steiner
{"title":"分数色数与霍尔比","authors":"Raphael Steiner","doi":"10.1007/s00493-025-00164-0","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i>, its <i>Hall ratio</i> <span><span style=\"\">\\rho (G)=\\max _{H\\subseteq G}\\frac{|V(H)|}{\\alpha (H)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.216ex\" role=\"img\" style=\"vertical-align: -1.507ex;\" viewbox=\"0 -1166.4 9758.2 1815.3\" width=\"22.664ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"2360\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(3417,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-78\" y=\"0\"></use><g transform=\"translate(1862,-155)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"888\" xlink:href=\"#MJMAIN-2286\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1667\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use></g></g><g transform=\"translate(7114,0)\"><g transform=\"translate(286,0)\"><rect height=\"60\" stroke=\"none\" width=\"2237\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,568)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"278\" xlink:href=\"#MJMATHI-56\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1048\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1437\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2326\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2715\" xlink:href=\"#MJMAIN-7C\" y=\"0\"></use></g><g transform=\"translate(302,-422)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"640\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1030\" xlink:href=\"#MJMATHI-48\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1918\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></g></svg></span><script type=\"math/tex\">\\rho (G)=\\max _{H\\subseteq G}\\frac{|V(H)|}{\\alpha (H)}</script></span> forms a natural lower bound for its fractional chromatic number <span><span style=\"\">\\chi _f(G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.806ex;\" viewbox=\"0 -821.4 2681.3 1168.4\" width=\"6.227ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-219\"></use><use x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\chi _f(G)</script></span>. A recent line of research studied the question whether <span><span style=\"\">\\chi _f(G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.714ex\" role=\"img\" style=\"vertical-align: -0.806ex;\" viewbox=\"0 -821.4 2681.3 1168.4\" width=\"6.227ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-219\"></use><use x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\chi _f(G)</script></span> can be bounded in terms of a (linear) function of <span><span style=\"\">\\rho (G)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 2083 1123.4\" width=\"4.838ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\rho (G)</script></span>. Dvořák, Ossona de Mendez and Wu [6, <i>Combinatorica</i>, 2020] gave a negative answer by proving the existence of graphs with bounded Hall ratio and arbitrarily large fractional chromatic number. In this paper, we solve two follow-up problems that were raised by Dvořák et al. The first problem concerns determining the growth of <i>g</i>(<i>n</i>), defined as the maximum ratio <span><span style=\"\">\\frac{\\chi _f(G)}{\\rho (G)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.417ex\" role=\"img\" style=\"vertical-align: -1.507ex;\" viewbox=\"0 -1252.7 2255.9 1901.6\" width=\"5.24ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"2015\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,663)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3C7\" y=\"0\"></use><use transform=\"scale(0.5)\" x=\"886\" xlink:href=\"#MJMATHI-66\" y=\"-340\"></use><use transform=\"scale(0.707)\" x=\"1115\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1505\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2291\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g><g transform=\"translate(271,-422)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-3C1\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"517\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"907\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1693\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">\\frac{\\chi _f(G)}{\\rho (G)}</script></span> among all <i>n</i>-vertex graphs. Dvořák et al. obtained the bounds <span><span style=\"\">\\Omega (\\log \\log n) \\le g(n)\\le O(\\log n)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 13111.6 1123.4\" width=\"30.453ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-3A9\" y=\"0\"></use><use x=\"722\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(1112,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><g transform=\"translate(2558,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"4004\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"4604\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"5272\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"6328\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use><use x=\"6808\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"7198\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"7798\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"8466\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"9522\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"10285\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(10675,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"12121\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"12722\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\Omega (\\log \\log n) \\le g(n)\\le O(\\log n)</script></span>. We show that the true value is close to the upper bound: <span><span style=\"\">g(n)=(\\log n)^{1-o(1)}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.909ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -949.2 8272.2 1252.6\" width=\"19.213ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use><use x=\"480\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"870\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1470\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"2137\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"3194\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(3583,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><use x=\"5029\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><g transform=\"translate(5630,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1764\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2154\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2654\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">g(n)=(\\log n)^{1-o(1)}</script></span>. The second problem posed by Dvořák et al. asks for the existence of graphs with bounded Hall ratio, arbitrarily large fractional chromatic number and such that every subgraph contains an independent set that touches a constant fraction of its edges. We show that such graphs indeed exist.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Chromatic Number Vs. Hall Ratio\",\"authors\":\"Raphael Steiner\",\"doi\":\"10.1007/s00493-025-00164-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a graph <i>G</i>, its <i>Hall ratio</i> <span><span style=\\\"\\\">\\\\rho (G)=\\\\max _{H\\\\subseteq G}\\\\frac{|V(H)|}{\\\\alpha (H)}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"4.216ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.507ex;\\\" viewbox=\\\"0 -1166.4 9758.2 1815.3\\\" width=\\\"22.664ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C1\\\" y=\\\"0\\\"></use><use x=\\\"517\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"907\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use x=\\\"1693\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"2360\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3417,0)\\\"><use xlink:href=\\\"#MJMAIN-6D\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-61\\\" y=\\\"0\\\"></use><use x=\\\"1334\\\" xlink:href=\\\"#MJMAIN-78\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1862,-155)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"888\\\" xlink:href=\\\"#MJMAIN-2286\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1667\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use></g></g><g transform=\\\"translate(7114,0)\\\"><g transform=\\\"translate(286,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"2237\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><g transform=\\\"translate(60,568)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-7C\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"278\\\" xlink:href=\\\"#MJMATHI-56\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1048\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1437\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2326\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2715\\\" xlink:href=\\\"#MJMAIN-7C\\\" y=\\\"0\\\"></use></g><g transform=\\\"translate(302,-422)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3B1\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"640\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1030\\\" xlink:href=\\\"#MJMATHI-48\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1918\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></g></g></g></svg></span><script type=\\\"math/tex\\\">\\\\rho (G)=\\\\max _{H\\\\subseteq G}\\\\frac{|V(H)|}{\\\\alpha (H)}</script></span> forms a natural lower bound for its fractional chromatic number <span><span style=\\\"\\\">\\\\chi _f(G)</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.714ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.806ex;\\\" viewbox=\\\"0 -821.4 2681.3 1168.4\\\" width=\\\"6.227ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C7\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"886\\\" xlink:href=\\\"#MJMATHI-66\\\" y=\\\"-219\\\"></use><use x=\\\"1115\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1505\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use x=\\\"2291\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\chi _f(G)</script></span>. A recent line of research studied the question whether <span><span style=\\\"\\\">\\\\chi _f(G)</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.714ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.806ex;\\\" viewbox=\\\"0 -821.4 2681.3 1168.4\\\" width=\\\"6.227ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C7\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"886\\\" xlink:href=\\\"#MJMATHI-66\\\" y=\\\"-219\\\"></use><use x=\\\"1115\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1505\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use x=\\\"2291\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\chi _f(G)</script></span> can be bounded in terms of a (linear) function of <span><span style=\\\"\\\">\\\\rho (G)</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 2083 1123.4\\\" width=\\\"4.838ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C1\\\" y=\\\"0\\\"></use><use x=\\\"517\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"907\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use x=\\\"1693\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\rho (G)</script></span>. Dvořák, Ossona de Mendez and Wu [6, <i>Combinatorica</i>, 2020] gave a negative answer by proving the existence of graphs with bounded Hall ratio and arbitrarily large fractional chromatic number. In this paper, we solve two follow-up problems that were raised by Dvořák et al. The first problem concerns determining the growth of <i>g</i>(<i>n</i>), defined as the maximum ratio <span><span style=\\\"\\\">\\\\frac{\\\\chi _f(G)}{\\\\rho (G)}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"4.417ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.507ex;\\\" viewbox=\\\"0 -1252.7 2255.9 1901.6\\\" width=\\\"5.24ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"2015\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><g transform=\\\"translate(60,663)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C7\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.5)\\\" x=\\\"886\\\" xlink:href=\\\"#MJMATHI-66\\\" y=\\\"-340\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1115\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1505\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2291\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g><g transform=\\\"translate(271,-422)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3C1\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"517\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"907\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1693\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">\\\\frac{\\\\chi _f(G)}{\\\\rho (G)}</script></span> among all <i>n</i>-vertex graphs. Dvořák et al. obtained the bounds <span><span style=\\\"\\\">\\\\Omega (\\\\log \\\\log n) \\\\le g(n)\\\\le O(\\\\log n)</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 13111.6 1123.4\\\" width=\\\"30.453ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-3A9\\\" y=\\\"0\\\"></use><use x=\\\"722\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(1112,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-6F\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><g transform=\\\"translate(2558,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-6F\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"4004\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"4604\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"5272\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"6328\\\" xlink:href=\\\"#MJMATHI-67\\\" y=\\\"0\\\"></use><use x=\\\"6808\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"7198\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"7798\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"8466\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"9522\\\" xlink:href=\\\"#MJMATHI-4F\\\" y=\\\"0\\\"></use><use x=\\\"10285\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(10675,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-6F\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"12121\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"12722\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\Omega (\\\\log \\\\log n) \\\\le g(n)\\\\le O(\\\\log n)</script></span>. We show that the true value is close to the upper bound: <span><span style=\\\"\\\">g(n)=(\\\\log n)^{1-o(1)}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.909ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -949.2 8272.2 1252.6\\\" width=\\\"19.213ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-67\\\" y=\\\"0\\\"></use><use x=\\\"480\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"870\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"1470\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"2137\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"3194\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3583,0)\\\"><use xlink:href=\\\"#MJMAIN-6C\\\"></use><use x=\\\"278\\\" xlink:href=\\\"#MJMAIN-6F\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-67\\\" y=\\\"0\\\"></use></g><use x=\\\"5029\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><g transform=\\\"translate(5630,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1279\\\" xlink:href=\\\"#MJMATHI-6F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1764\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2154\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2654\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">g(n)=(\\\\log n)^{1-o(1)}</script></span>. The second problem posed by Dvořák et al. asks for the existence of graphs with bounded Hall ratio, arbitrarily large fractional chromatic number and such that every subgraph contains an independent set that touches a constant fraction of its edges. We show that such graphs indeed exist.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00164-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00164-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G,它的霍尔比\rho (G)= \max _H{\subseteq G }\frac{|V(H)|}{\alpha (H)}\rho (G)= \max _H{\subseteq G }\frac{|V(H)|}{\alpha (H)}形成了它的分数色数\chi _f(G) \chi _f(G)的自然下界。最近的一项研究研究了\chi _f(G) \chi _f(G)是否可以用\rho (G) \rho (G)的(线性)函数有界的问题。Dvořák, Ossona de Mendez和Wu [6, Combinatorica, 2020]通过证明具有有界霍尔比和任意大分数色数的图的存在性给出了否定的答案。在本文中,我们解决了Dvořák等人提出的两个后续问题。第一个问题涉及确定g(n)的增长,定义为所有n顶点图中的最大比率\frac{\chi _f(G)}{\rho (G)}\frac{\chi _f(G)}{\rho (G)}。Dvořák等人得到了\Omega (\log\log n) \le g(n) \le O(\log n) \Omega (\log\log n) \le g(n) \le O(\log n)。我们证明了真实值接近上界:g(n)=(\log n)^1{-o(1)}g(n)=(\log n)^1{-o(1)}。Dvořák等人提出的第二个问题要求存在有界霍尔比的图,任意大的分数色数,使得每个子图都包含一个独立的集合,触及其边缘的恒定分数。我们证明这样的图确实存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Chromatic Number Vs. Hall Ratio

Given a graph G, its Hall ratio \rho (G)=\max _{H\subseteq G}\frac{|V(H)|}{\alpha (H)} forms a natural lower bound for its fractional chromatic number \chi _f(G). A recent line of research studied the question whether \chi _f(G) can be bounded in terms of a (linear) function of \rho (G). Dvořák, Ossona de Mendez and Wu [6, Combinatorica, 2020] gave a negative answer by proving the existence of graphs with bounded Hall ratio and arbitrarily large fractional chromatic number. In this paper, we solve two follow-up problems that were raised by Dvořák et al. The first problem concerns determining the growth of g(n), defined as the maximum ratio \frac{\chi _f(G)}{\rho (G)} among all n-vertex graphs. Dvořák et al. obtained the bounds \Omega (\log \log n) \le g(n)\le O(\log n). We show that the true value is close to the upper bound: g(n)=(\log n)^{1-o(1)}. The second problem posed by Dvořák et al. asks for the existence of graphs with bounded Hall ratio, arbitrarily large fractional chromatic number and such that every subgraph contains an independent set that touches a constant fraction of its edges. We show that such graphs indeed exist.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信